Functional Subtyping of Breast Cancer205
R.L. Beijersbergen and R. Bernards
Commentary on Brough et al., p. 260

Prospective
Parallel Anticancer Drug Development and Molecular Stratification to Qualify Predictive Biomarkers: Dealing with Obstacles Hindering Progress207
V.M. Garcia, P.A. Cassier, and J. de Bono

A Shining Light in the Darkness for the Treatment of Pancreatic Neuroendocrine Tumors213
J. Capdevila and J. Tabernero

Genetic and Functional Studies Implicate HIF1α as a 14q Kidney Cancer Suppressor Gene222

Précis: Genetic and functional studies demonstrate that loss of chromosome 14q is a critical event in the etiology of clear cell renal carcinoma and identify HIF1α as a tumor suppressor gene in this disease.

mTOR Inhibition, the Second Generation: ATP-Competitive mTOR Inhibitor Initiates Unexpected Receptor Tyrosine Kinase–Driven Feedback Loop203
M. Keniry and R. Parsons
Commentary on Rodrik-Outmezguine et al., p. 248

Unraveling the Role of Hypoxia-Inducible Factor in Renal Cell Carcinoma: A Biological and Therapeutic Perspective198
S.K. Pal and R.A. Figlin
Commentary on Shen et al., p. 222

Targeting NF-κB in Mouse Models of Lung Adenocarcinoma200
C. Van Waes
Commentary on Xue et al., p. 236

In The Spotlight

MINI REVIEW
A Shining Light in the Darkness for the Treatment of Pancreatic Neuroendocrine Tumors213
J. Capdevila and J. Tabernero
Response and Resistance to NF-κB Inhibitors in Mouse Models of Lung Adenocarcinoma. W. Xue, E. Meylan, T.G. Oliver, D.M. Feldser, M.M. Winslow, R. Bronson, and T. Jacks

Précis: This study provides preclinical evidence that the NF-κB pathway is a potential therapeutic target in a subset of lung adenocarcinomas that have activation of the NF-κB pathway.

mTOR Kinase Inhibition Causes Feedback-Dependent Biphasic Regulation of AKT Signaling. V.S. Rodrik-Outmezguine, S. Chandrarlapatty, N.C. Pagano, P.I. Poulikakos, M. Scaltriti, E. Moskatel, J. Baselga, S. Guichard, and N. Rosen

Précis: Inhibition of mTOR kinase causes biphasic regulation of AKT signaling involving receptor tyrosine kinases.

Précis: Functional RNAi screen exploiting synthetic lethality identifies genes critical for growth and survival of breast cancer cells as well as potential therapeutic targets.

ON THE COVER Rodrik-Outmezguine and colleagues identify an adaptive mechanism in the AKT signaling pathway. AKT signaling becomes reactivated through feedback-induced phosphorylation of AKT on T308 but not on S473. The addition of RTK inhibitors prevented reactivation, causing cell death and tumor regression in vivo, highlighting the possible need for combinatorial approaches to block feedback-regulated pathways. For details, please see the article by Rodrik-Outmezguine and colleagues on page 248.