The Potential Benefits of BIM in the Further Pursuit of Biomarker Discovery in Cancer Therapeutics
T. Yoshida and E.B. Haura
Commentary on Faber et al., p. 352

In Focus
Targeting the Tumor Microenvironment in Cancer: Why Hyaluronidase Deserves a Second Look
C.J. Whatcott, H. Han, R.G. Posner, G. Hostetter, and D.D. Von Hoff

Clinical Implementation of Comprehensive Strategies to Characterize Cancer Genomes: Opportunities and Challenges
L.E. MacConaill, P. Van Hummelen, M. Meyerson, and W.C. Hahn

Discovery of Mdm2-MdmX E3 Ligase Inhibitors Using a Cell-Based Ubiquitination Assay
Précis: A novel class of small-molecule inhibitors of the Mdm2-MdmX E3 ligase heterocomplex is identified using a high-throughput cell-based Mdm2 auto-ubiquitination assay.
PPM1H Is a p27 Phosphatase Implicated in Trastuzumab Resistance 326
Précis: PPM1H is a p27 phosphatase required for trastuzumab sensitivity in vitro that may be useful for predicting which HER2+ breast cancers are more likely to respond to trastuzumab therapy.

ERα-Dependent E2F Transcription Can Mediate Resistance to Estrogen Deprivation in Human Breast Cancer 338
Précis: ERα drives CDK4/E2F-mediated cell cycle progression and cooperates with PI3K hyperactivation in estrogen-deprived ERα breast cancer cells.

Faber and colleagues demonstrate that expression of the pro-apoptotic Bcl-2 family member BIM predicts the capacity of selective kinase inhibitors to induce apoptosis in cancers addicted to EGFR, HER2, PI3K, or BRAF signaling. Evaluating BIM levels in tumor biopsies prior to chemotherapy therefore has the potential to predict which patients are most likely to respond to single-agent kinase inhibitor therapy. For details, please see the article by Faber and colleagues on page 352.

BIM Expression in Treatment-Naïve Cancers Predicts Responsiveness to Kinase Inhibitors 352
Précis: Quantitation of pretreatment RNA levels of the pro-apoptotic factor BIM can predict the efficacy of tyrosine kinase inhibitor therapy in oncogene-addicted cancers.
CANCER DISCOVERY

1 (4)

Updated version Access the most recent version of this article at:
http://cancerdiscovery.aacrjournals.org/content/1/4

E-mail alerts Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.