The Potential Benefits of BIM in the Further Pursuit of Biomarker Discovery in Cancer Therapeutics ...........289
T. Yoshida and E.B. Haura
Commentary on Faber et al., p. 352

In Focus
Targeting the Tumor Microenvironment in Cancer:
Why Hyaluronidase Deserves a Second Look ..............291
C.J. Whatcott, H. Han, R.G. Posner, G. Hostetter, and D.D. Von Hoff

Clinical Implementation of Comprehensive Strategies to Characterize Cancer Genomes: Opportunities and Challenges ..........297
L.E. MacConaill, P. Van Hummelen, M. Meyerson, and W.C. Hahn

Discovery of Mdm2-MdmX E3 Ligase Inhibitors Using a Cell-Based Ubiquitination Assay . .312
Précis: A novel class of small-molecule inhibitors of the Mdm2-MdmX E3 ligase heterocomplex is identified using a high-throughput cell-based Mdm2 auto-ubiquitination assay.

On the Road to Combinations of Targeted Therapies: PPM1H Phosphatase as a Suppressor of Trastuzumab Resistance .................285
N. Aceto and M. Bentires-Alj
Commentary on Lee-Hoeflich et al., p. 326

ER and PI3K Independently Modulate Endocrine Resistance in ER-Positive Breast Cancer .................287
B.A. Van Tine, R.J. Crowder, and M.J. Ellis
Commentary on Miller et al., p. 338
**PPM1H Is a p27 Phosphatase Implicated in Trastuzumab Resistance**


**Précis:** PPM1H is a p27 phosphatase required for trastuzumab sensitivity in vitro that may be useful for predicting which HER2+ breast cancers are more likely to respond to trastuzumab therapy.

---

**ERα-Dependent E2F Transcription Can Mediate Resistance to Estrogen Deprivation in Human Breast Cancer**


**Précis:** ER drives CDK4/E2F-mediated cell cycle progression and cooperates with PI3K hyperactivation in estrogen-deprived ER+ breast cancer cells.

---

**ON THE COVER** Faber and colleagues demonstrate that expression of the pro-apoptotic Bcl-2 family member BIM predicts the capacity of selective kinase inhibitors to induce apoptosis in cancers addicted to EGFR, HER2, PI3K, or BRAF signaling. Evaluating BIM levels in tumor biopsies prior to chemotherapy therefore has the potential to predict which patients are most likely to respond to single-agent kinase inhibitor therapy. For details, please see the article by Faber and colleagues on page 352.