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IMPLICATIONS OF ncRNAs FOR 
CANCER MANAGEMENT
lncRNA Diagnostic Biomarkers

For clinical medicine, lncRNAs offer several possible ben-
efits. lncRNAs, such as PCAT-1, commonly show restricted 
tissue-specific and cancer-specific expression patterns (9). 
This tissue-specific expression distinguishes lncRNAs from 
miRNAs and protein-coding mRNAs, which are frequently 
expressed from multiple tissue types. Although the underly-
ing mechanism for lncRNA tissue specificity is unclear, re-
cent studies of chromatin confirmation show tissue-specific 
patterns, which may affect ncRNA transcription (29, 52). 
Given this specificity, ncRNAs may be superior biomarkers to 
many current protein-coding biomarkers, both for tissue-of-
origin tests and for cancer diagnostics.

A prominent example is PCA3, an lncRNA that is a prostate-
specific gene and markedly overexpressed in prostate cancer. 
Although the biologic function of PCA3 is unclear, its utility as 
a biomarker has led to the development of a clinical PCA3 di-
agnostic assay for prostate cancer, and this test is already being 
clinically used (82, 83). In this test, PCA3 transcript is detected 
in urine samples from patients with prostate cancer, which 
contain prostate cancer cells shed into and passed through the 
urethra. Thus, monitoring PCA3 does not require invasive pro-
cedures (Fig. 4A) (82). The PCA3 test represents the most effec-
tive clinical translation of a cancer-associated ncRNA gene, and 
the rapid timeline of this development—only 10 years between 
its initial description and a clinical test—suggests that the use 
of ncRNAs in clinical medicine is only beginning. Noninvasive 
detection of other aberrantly expressed lncRNAs, such as 
upregulation of HULC, which occurs in hepatocellular carci-
nomas, has also been observed in patient blood sera (10); how-
ever, other lncRNA-based diagnostics have not been developed 
for widespread use.

lncRNA-Based Therapies
The transition from ncRNA-based diagnostics to ncRNA-

based therapies is also showing initial signs of development. 
Although the implementation of therapies targeting ncRNAs 
is still remote for clinical oncology, experimental therapeutics 
employing RNA interference (RNAi) to target mRNAs have been 
tested in mice, cynomolgus monkeys, and humans (84), as part 
of a phase I clinical trial for patients with advanced cancer (Fig. 
4B). Davis and colleagues (84) found that systemic administra-
tion of RNAi-based therapy was able to localize effectively to hu-
man tumors and reduce expression of its target gene mRNA and 
protein. Currently, ongoing clinical trials are further evaluating 
the safety and efficacy of RNAi-based therapeutics in patients 
with a variety of diseases, including cancer (85), and these ap-
proaches could be adapted to target lncRNA transcripts.

Other studies investigate an intriguing approach that em-
ploys modular assembly of small molecules to adapt to ab-
errant RNA secondary structure motifs in disease (86). This 
approach could potentially target aberrant ncRNAs, mutant 
mRNAs, as well as nucleotide triplet-repeat expansions seen 
in several neurologic diseases (such as Huntington disease). 
However, most RNA-based research remains in the early stages 
of development, and the potential for RNAi therapies target-
ing lncRNAs in cancer is still far from use in oncology clinics.

and one study discovered a paraspeckle-retained, polyade-
nylated nuclear ncRNA, termed CTN-RNA, that is a counter-
part to the protein-coding murine CAT2 (mCAT2) gene (75). 
CTN-RNA is longer than mCAT2, and under stress condi-
tions, cleavage of CTN-RNA to the mCAT2 coding transcript 
resulted in increased mCAT2 protein (75).

In cancer, two ncRNAs involved in mRNA splicing and 
nuclear paraspeckle function, MALAT1 and NEAT1, are over-
expressed. MALAT1 and NEAT1 are genomic neighbors on 
Chr11q13 and both are thought to contribute to gene expres-
sion by regulating mRNA splicing, editing, and export (Fig. 
3D) (76, 77). MALAT1 may further serve as a precursor to a 
small 61-bp ncRNA that is generated by RNase P cleavage of 
the primary MALAT1 transcript and exported into the cyto-
plasm (78). Although a unique role for MALAT1 in cancer is 
not yet known, its overexpression in lung cancer predicts for 
aggressive, metastatic disease (79).

Regulatory RNA-RNA Interactions
Recent work on mechanisms of RNA regulation has high-

lighted a novel role for RNA-RNA interactions between 
ncRNAs and mRNA sequences. These interactions are con-
ceptually akin to miRNA regulation of mRNAs, because 
sequence homology between the ncRNA and the mRNA is 
important to the regulatory process.

This sequence homology may be derived from ances-
tral repeat elements that contribute sequence to either the 
untranslated sequences of a protein-coding gene or, less 
frequently, the coding region itself. For example, STAU1-
mediated mRNA decay involves the binding of STAU1, an 
RNA degradation protein, to protein-coding mRNAs that 
interact with lncRNAs containing ancestral Alu repeats. In 
this model, sequence repeats, typically Alus, in lncRNAs and 
mRNAs partially hybridize, forming double-stranded RNA 
complexes that then recruit STAU1 to implement RNA deg-
radation (Fig. 3E) (80). A related concept is found with XIST, 
which contains a conserved repeat sequence, termed RepA, 
in its first exon. RepA is essential for XIST function, and 
the RepA sequence is necessary to recruit PRC2 proteins for 
X-chromosome inactivation (40).

Poliseno and colleagues (81) recently posited another 
model for mRNA regulation in which they suggested that 
transcribed pseudogenes serve as a decoy for miRNAs that 
target the protein-coding mRNA transcripts of their cog-
nate genes. Sequestration of miRNAs by the pseudogene 
then regulates the gene expression level of the protein-cod-
ing mRNA indirectly (Fig. 3F). In addition to pseudogenes, 
this model more broadly suggests that all long ncRNAs, 
as well as other protein-coding mRNAs, may function as 
molecular “sponges” that bind and sequester miRNAs in 
order to control gene expression indirectly. These research-
ers showed that pseudogenes of two cancer genes, PTEN 
and KRAS, may be biologically active, and that PTENP1, 
a pseudogene of PTEN that competes for miRNA binding 
sites with PTEN, itself functions as a tumor suppressor in in 
vitro assays and may be genomically lost in cancer (81). This 
intriguing hypothesis may shed new light on the functions 
of ncRNAs, pseudogenes, and even the untranslated regions 
of a protein-coding gene.
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represent an epidemiologic tool to assess patient populations 
with a high risk of prostate cancer.

Of the 14 genomic loci, the most prominent by far is the 
“gene desert” region upstream of the cMYC oncogene on 
chromosome 8q24, which harbors 10 of the 31 reproduc-
ible SNPs associated with prostate cancer (Fig. 4C). Several 
SNPs in the 8q24 region have been studied for their effect on 
enhancers (88), particularly for enhancers of cMYC (89), and 

lncRNAs in Genomic Epidemiology
In the past decade, GWASs have become a mainstream way 

to identify germline SNPs that may predispose to myriad hu-
man diseases. In prostate cancer, more than 20 GWASs have 
reported 31 SNPs with reproducible allele-frequency changes 
in patients with prostate cancer compared with those with-
out prostate cancer (87), and these 31 SNPs cluster into 14 
genomic loci (87). In principle, profiling of these SNPs could 

Figure 4.  Clinical implications of lncRNAs. A, the PCA3 urine biomarker test for prostate cancer employs a noninvasive approach to disease 
diagnosis by collecting urine samples from patients, isolating nucleic acids from cells in the urine sediment, and quantifying PCA3 expression.
B, lncRNA-based therapies may target the lncRNA by utilizing either RNA interference (RNAi), which uses sequence homology between the lncRNA 
and the RNAi therapeutic molecule, or a small-molecule therapy that interacts with the lncRNA. These therapeutic avenues may be appropriate for 
systemic therapy by either intravenous or oral administration. C, GWASs may provide germline polymorphisms that predict an individual patient’s 
clinical risk for disease development, response to therapy, or disease aggressiveness, while also providing molecular information through the 
impact of polymorphisms on gene expression of key genes. CDS, coding sequence.
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Elucidating the Role of lncRNA Sequence 
Conservation

In general, most protein-coding exons are highly conserved 
and most lncRNAs are poorly conserved. This is not always 
true; T-UCRs are prime examples of conserved ncRNAs. 
However, the large majority of lncRNAs exhibit substantial 
sequence divergence among species, and lncRNAs that do 
show strong conservation frequently exhibit this conserva-
tion in only a limited region of the transcript, and not in the 
remainder of the gene.

This conundrum has sparked many hypotheses, many of 
which have merit. Small regions of conservation could indi-
cate functional domains of a given ncRNA, such as a bind-
ing site for proteins, miRNAs, mRNAs, or genomic DNA. 
Development of abundant ncRNA species could also suggest 
evolutionary advancement as species develop. In support of 
this latter proposition, many researchers have commented 
that complex mammalian genomes (such as the human ge-
nome) have a vastly increased noncoding DNA component 
of their genome compared with single-celled organisms and 
nematodes, whereas the complement of protein-coding genes 
varies less throughout evolutionary time (96).

For lncRNAs, the issue of sequence conservation is para-
mount. However, it is now well established that poorly con-
served lncRNAs can be biologically important, but it is unclear 
whether these lncRNAs represent species-specific evolutionary 
traits or whether functional homologs have simply not been 
found. For example, AIR was initially described in mice in the 
1980s, but a human homolog was not identified until 2008 (97).

Moreover, even lncRNAs with relatively high conservation, 
such as HOTAIR, may have species-specific function. Indeed, a 
study of murine HOTAIR (mHOTAIR) showed that mHOTAIR 
did not regulate the HoxD locus and did not recapitulate 
the functions observed in human cells (98). Other ncRNAs 
observed in mice, such as linc-p21, also show only limited se-
quence homology to their human forms and may have diver-
gent functions as well. This may support hypotheses of rapid 
evolution of lncRNAs during the course of mammalian devel-
opment. Additionally, this may suggest either that lncRNAs 
may have functions independent of conserved protein com-
plexes (which have comparatively static functions through-
out evolution) or that lncRNAs may adapt to cooperate with 
different protein complexes in different species.

Determining Somatic Alterations of lncRNAs  
in Cancer

To date, somatic mutation of lncRNAs in cancer is not 
well explored. Although numerous lncRNAs display altered 
expression levels in cancer, it is unclear to what extent cancers 
specifically target lncRNAs for genomic amplification/dele-
tion, somatic point mutations, or other targeted aberrations.

In several examples, data suggest that lncRNAs may be a 
target for somatic aberrations in cancer. For example, approx-
imately half of prostate cancers harbor gene fusions of the 
ETS family transcription factors (ERG, ETV1, ETV4, ETV5), 
which generally result in the translocation of an androgen-
regulated promoter to drive upregulation of the ETS gene 
(99). One patient was initially found to have an ETV1 trans-
location to an intergenic androgen-regulated region (100), 

chromosome looping studies have shown that many regions 
within 8q24 may physically interact with the genomic posi-
tion of the cMYC gene (90).

Recently, our identification of PCAT-1 as a novel chr8q24 
gene implicated in the pathogenesis of prostate cancer 
further highlights the importance and complexity of this 
region (Fig. 4C) (9). Although the relationship between 
PCAT-1 and the 8q24 SNPs is not clear at this time, this dis-
covery suggests that previously termed “gene deserts” may 
in fact harbor critical lncRNA genes, and that SNPs found 
in these regions may affect uncovered aspects of biology. 
Relatedly, GWAS analyses of atherosclerosis, coronary ar-
tery disease, and type 2 diabetes have all highlighted ANRIL 
on chr9p21 as an ncRNA gene harboring disease-associated 
SNPs (50).

Clinically, the use of GWAS data may identify patient pop-
ulations at risk of cancer and may stratify patient disease 
phenotypes, such as aggressive versus indolent cancer, and 
patient outcomes (91). SNP profiles may also be used to pre-
dict a patient’s response to a given therapy (92). As such, the 
clinical translation of GWAS data remains an area of interest 
for cancer epidemiology.

FUTURE DIRECTIONS
Defining the lncRNA Component of the  
Human Genome

Going forward, it is clear that the systematic identification 
and annotation of lncRNAs, as well as their expression pat-
terns in human tissues and disease, is important to clarifying 
the molecular biology underlying cancer. These efforts will be 
facilitated by large-scale RNA-Seq studies followed by ab initio 
or de novo sequence data assembly to discover lncRNAs in an 
unbiased manner (9, 26).

However, it is increasingly appreciated that a number 
of annotated but uncharacterized transcripts are impor-
tant lncRNAs; HOTTIP is one such example (52). Similarly, 
the STAU1-interacting lncRNAs described by Gong and 
colleagues (80) were also found by screening for anno-
tated transcripts that contained prominent Alu repeats. 
Although these examples were annotated as noncoding 
genes, it is also possible that other annotated genes, enu-
merated in early studies as protein-coding but not studied 
experimentally, are mislabeled ncRNA genes. These may 
include the generic “open-reading frame” (ORF) genes 
(such as LOCxxx or CxxORFxx genes) that have not been 
studied in detail.

Supporting this idea, Dinger et al. (93) recently argued 
that bioinformatically distinguishing between protein-
coding and noncoding genes can be difficult and that tra-
ditional computational methods for doing this may have 
been inadequate in many cases. For example, XIST was ini-
tially identified as a protein-coding gene because it has 
a potential, unused ORF of nearly 300 amino acids (94). 
Additional complications further include an increasing 
appreciation of mRNA transcripts that function both by 
encoding a protein and at the RNA level, which would sup-
port miRNA sequestration hypotheses posited by Poliseno 
and colleagues (81), and of very small ORFs (encoding pep-
tides <10 kDa) (95).
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by facilitating epigenetic repression of downstream target 
genes. Thus, lncRNAs represent a novel, poorly character-
ized layer of cancer biology. In the near term, clinical transla-
tion of lncRNAs may assist biomarker development in cancer 
types without robust and specific biomarkers, and in the fu-
ture, RNA-based therapies may be a viable option for clinical 
oncology.
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