mTORC 2:1 for Chemotherapy Sensitization in Glioblastoma 475
W. Wick, J. Blaes, and M. Weiler
Commentary on Tanaka et al., p. 524

Prospective
Curing “Incurable” Cancer 477
J.D. Watson

REVIEW
PI3K and STAT3: A New Alliance 481
P.K. Vogt and J.R. Hart

RESEARCH BRIEF
Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New Drug Targets 487
H. Beltran, D.S. Rickman, K. Park,
S.S. Chae, A. Sboner, T.Y. MacDonald,
Y. Wang, K.L. Sheikh, S. Terry, S.T. Tagawa,
R. Dhir, J.B. Nelson, A. de la Taille,
Y. Allory, M.B. Gerstein, S. Perner,
K.J. Pienta, A.M. Chinnaiyan, Y. Wang,
C.C. Collins, M.E. Gleave, F. Demichelis,
D.M. Nanus, and M.A. Rubin
Précis: Frequent AURKA and MYCN amplification is identified in an aggressive prostate cancer subtype.

RESEARCH ARTICLES
Cell-Selective Inhibition of NF-κB Signaling Improves Therapeutic Index in a Melanoma Chemotherapy Model 496
T. Enzler, Y. Sano, M-K. Choo, H.B. Cottam,
M. Karin, H. Tsao, and J.M. Park
Précis: Host- and tumor-specific cellular responses, respectively, underlie the adverse and therapeutic effects of NF-κB blocking agents.
A Molecularly Annotated Platform of Patient-Derived Xenografts ("Xenopatients") Identifies HER2 as an Effective Therapeutic Target in Cetuximab-Resistant Colorectal Cancer 508

Précis: Population-based preclinical testing identifies HER2 amplification as a novel biomarker of cetuximab resistance in metastatic colon cancer and indicates dual targeting of HER2 and EGFR may be a more effective therapeutic approach.

For more News and Research Watch, visit Cancer Discovery online at www.AACR.org/CDnews. Online-only News stories include the following:

• Making Molecular Diagnostics Ready for Prime Time
• Optical Tomography May Aid 3D Diagnostics
• What's Cost-Effective in Cancer Care?
• Chemotherapy May Target Mitochondria on the Edge

ON THE COVER
Tanaka and colleagues demonstrate that mTORC2 is activated in the majority of glioblastomas and mediates chemoresistance in an AKT-independent manner via NF-κB pathway activation. Surprisingly, they show increased activity of this mTORC2–NF-κB signaling pathway in GBM cells in response to rapamycin, which may provide an explanation for the failure of rapamycin to demonstrate efficacy in GBM clinical trials. Instead, dual mTOR kinase inhibitors that block the activity of both mTORC1 and mTORC2 may improve clinical outcome, particularly when combined with other chemotherapeutic agents. For details, please see the article by Tanaka and colleagues on page 524.