Members of the 14-3-3 protein family are present in all eukaryotes, where they have diverse functions as the result of their ability to bind and influence the activity of many cellular proteins. Currently, the list of 14-3-3–interacting proteins is close to 300, and it seems likely that most cellular processes are subject to some type of control by this family. In general, dimers or heterodimers of 14-3-3 proteins recognize specific phospho-serine/phospho-threonine motifs in the proteins to which they bind (RSXpSXP and RXXXpSSp), although nonphosphorylated exceptions have been found. The first studies on 14-3-3 proteins implicated them in control of cell-cycle progression via their ability to bind and inhibit the Cdc25 phosphatases that activate Cdk1. Important roles in cell survival were also uncovered, for example, Akt-dependent phosphorylation of BAD causes it to bind 14-3-3, thereby preventing it from interfering with the pro-survival function of Bcl-XL (reviewed in refs. 1–4).

There are seven 14-3-3 isoforms, identified by Greek letters. The isoform 14-3-3σ, which was studied in the article by Ling and colleagues (5) in this issue of Cancer Discovery, has some unique features that distinguish it from the other 6 members of this protein family. For example, 14-3-3σ is the only isoform that is epithelial cell specific and upregulated by p53 and BRCA1 in response to DNA damage to induce G1-M arrest. Furthermore, in contrast to the other isoforms, expression of 14-3-3σ is often lost in various types of human tumors, pointing to a tumor suppressor role. In tumors, p53 loss can impact 14-3-3σ mRNA levels. It was also found a number of years ago in breast tumors that low 14-3-3σ expression levels can result from aberrant CpG promoter methylation (5).

Low 14-3-3σ levels are found in many types of human tumors due to allelic loss and/or promoter hypermethylation (reviewed in ref. 1); in addition, breast, cervical, ovarian, and bladder cancers have been reported to have low levels of 14-3-3σ, although some tumors, such as ovarian tumors, oral squamous cell carcinomas, and pancreatic ductal adenocarcinomas, among others, show upregulation of the protein (7–9). However, there is a good correlation with hypermethylation and lower 14-3-3σ RNA levels, for example, in the tumors examined by Ferguson and colleagues (6), in which no 14-3-3σ RNA was detected in 45 of 48 tumors. Mhawech and colleagues (10) also found a close association between 14-3-3σ CpG island methylation and low protein expression levels in patients with breast adenocarcinomas.

However, there is not yet a consensus on expression levels of 14-3-3σ or on its potential prognostic significance in patients with breast cancer. For example, 14-3-3σ expression has been found to be positively and negatively associated with different drug resistance mechanisms in breast cancer cell lines (11, 12). Moreover, in a recent proteomic study, authors detected 14-3-3σ protein in 65 of 68 primary breast tumors examined (refs. 13–18; see Table 1 for more details on breast and other cancers). In summary, the data suggest that 14-3-3σ may only have a tumor suppressor function in a specific subtype of breast cancer.

What can we learn about 14-3-3σ’s role as a tumor suppressor in the article by Ling and colleagues (5) in this issue? First, we need to provide some information on the transgenic models that were used. In the first model, referred to as ErbB2KI, mice carry a Cre-inducible activated Erbb2 allele under transcriptional control of its own promoter and develop focal mammary cancers after an extended period of time. In the second model, referred to as NIC (MMTV-NDL-IRES-Cre), activated Erbb2 and Cre are both driven by the MMTV promoter. Tumors develop more rapidly in this model compared with ErbB2KI transgenic mice. Because the ErbB2KI model has a long period of latency, it is useful for examining chromosomal alterations that might contribute to tumorigenesis, something that was originally examined by Montagna and colleagues (19). In addition to amplification of the Erbb2 locus, consistent deletion or monosomy of chromosome 4 was observed (14). Of note, MMTV-polyoma middle-T-Antigen–induced mammary cancer did not exhibit recurrent loss of chromosome 4, suggesting this genetic alteration is a specific characteristic of ERBB2-driven tumors.

In a follow-up study of 80 tumors, the region on chromosome 4 was refined to a 1.88-Mb area encoding >30 genes (20). Because the distal part of chromosome 4 is orthologous to human chromosome 1p, a region that is often lost in human
13 of 17 tumors had low or no 14-3-3σ expression of the remaining 14-3-3σ was increased in tumors with 14-3-3σ expression and occurring in the absence of gene amplification. This finding is interesting in light of their previous findings showing that the transcription factor EGR2 and its co-activator CITED1 are upregulated in the ErbB2KI transgenic model and that EGR2 together with CITED1 bind the Erbb2 gene promoter to stimulate its transcription (21). EGR2 also happens to be a 14-3-3σ binding partner; when phosphorylated on serine 376, 14-3-3σ binds EGR2 and sequesters it in the cytoplasm. Following the loss of 14-3-3σ, the transcription factor EGR2 enters the nucleus, where it stimulates Erbb2 transcription (19).

Next, Ling and colleagues (5) concentrated on what loss of 14-3-3σ does to enhance the onset of the ErbB2KI tumors and their increased metastatic potential. To mechanistically study metastasis, they turned to the NIC model, in particular to ex vivo tumor cell lines lacking 14-3-3σ expression that were generated from primary tumors. Reintroduction of 14-3-3σ into these tumor cell lines did not impact proliferation; however, the migratory ability of the cells was impaired, and they had a reduced in vivo metastatic potential. Interestingly, expression of another isoform, 14-3-3ζ, did not affect migration. This finding shows that despite the similarity of proteins in the 14-3-3 family, there are important differences in their target proteins.

The authors previously showed that 14-3-3σ complexes with the polarity protein PAR3 (22). In the absence of 14-3-3σ, PAR3 is expressed, but its membrane localization is lost; introduction of 14-3-3σ restores PAR3 membrane localization and tight junctional and adherens complexes (22). In the new study, Ling and colleagues (5) demonstrate that in tumor cells from the NIC model, loss of 14-3-3σ is also associated with loss of PAR3 from the membrane and loss of adherens junctions.

Table 1. Existing data on 14-3-3σ expression

<table>
<thead>
<tr>
<th>14-3-3σ Expression in breast and other cancers</th>
<th>Type of analysis</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downregulated in breast cancer</td>
<td>Promoter hypermethylation: n = 43/50 primary tumors, 32/32 microdissected carcinoma mRNA downregulated in 43/45 primary tumors</td>
<td>6</td>
</tr>
<tr>
<td>Downregulated in breast cancer</td>
<td>IHC: positive staining in 92% of usual ductal hyperplasia and decreased to 23% in invasive ductal carcinoma</td>
<td>14</td>
</tr>
<tr>
<td>Infrequent downregulation in breast cancer</td>
<td>Proteomic analysis and IHC: 65/68 were positive</td>
<td>13</td>
</tr>
<tr>
<td>Downregulated in breast cancer and other types of gynecologic cancers</td>
<td>IHC: 10/43 breast tumors were positive</td>
<td>10</td>
</tr>
<tr>
<td>Downregulated in lung squamous carcinoma metastatic to lymph node</td>
<td>Western blot and IHC: n = 30 paired samples revealed significantly reduced expression in lung metastatic vs. primary tumors</td>
<td>15</td>
</tr>
<tr>
<td>Downregulated by promoter methylation in NPC</td>
<td>Methylation: 63/75 NPC samples Western blot and IHC: downregulation or loss of 14-3-3σ confirmed</td>
<td>16</td>
</tr>
<tr>
<td>Upregulated, correlating with poor prognosis in ovarian tumors</td>
<td>IHC: 8/10 metastatic ovarian tumors and the corresponding primary tumors</td>
<td>7</td>
</tr>
<tr>
<td>Downregulated by hypermethylation in salivary gland adenoid cystic carcinoma</td>
<td>IHC: 1/14 tumor samples positive</td>
<td>17</td>
</tr>
<tr>
<td>Upregulated in PDAC</td>
<td>IHC: 23/33 intraductal papillary-mucinous tumors and 14/14 invasive ductal carcinomas were positive IHC: high is 51/55 in LN metastases, and 49/55 primary tumors were positive</td>
<td>9 18</td>
</tr>
<tr>
<td>Upregulated in lymph node metastases relative to primary PDAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: IHC, immunohistochemistry; NPC, nasopharyngeal carcinoma; PDAC, pancreatic ductal adenocarcinoma
Finally, the authors attempted to provide mechanistic insight into the rapid onset of the ErbB2KI tumors that are deficient for 14-3-3σ. First, they showed that these tumors had greater Ki67 staining in comparison with ErbB2KI control tumors. Moreover, an analysis of extracellular signal-regulated kinase (ERK) and AKT (v-akt murine thymoma viral oncogene homolog 1) pathway signaling in 20 tumors, 18 of which had no 14-3-3σ expression, revealed elevated levels of phospho-ERK and phospho-AKT, although only phospho-ERK elevation was significant. In addition, the RAF (kinase effector of Ras) kinases have multiple regulatory phosphorylation sites, including sites that dock to only phospho-ERK elevation was significant. In addition, elevated levels of phospho-ERK and phospho-AKT, although σ ERK levels were slightly elevated. Introduction of 14-3-3–deficient NIC tumor cell lines. In control cells, C-RAF signal control tumors. Moreover, an analysis of extracellular had greater Ki67 staining in comparison with ErbB2KI deficient for 14-3-3σ–deficient ErbB2KI tumors. Some hu...form (p110-PITSLRE) required for completion of cytokinesis, which can facilitate the development of pre-cancerous tetraploid lesions (reviewed in ref. 2). It is important to mention that salivary tumors were also observed in the 14-3-3σ–deficient ErbB2KI tumors. Some human parotid tumors do show elevated levels of ERBB2 as well as 14-3-3σ methylation (17, 24). This finding suggests that ERBB2 overexpression might underlie at least some other cancers in which 14-3-3σ is consistently lost, a possibility that remains to be explored. We think that the work presented in the article by Ling and colleagues (5) is important for a few reasons. First, because tumors develop slowly and in a sporadic fashion in the ErbB2KI model, in contrast to MMTV-NeuT models, this model is very useful for uncovering other consistent genetic alterations that arise in the tumors; 14-3-3σ loss seems to be a particularly interesting one that will probably provide even more insight into ERBB2 breast cancer once the full spectrum of its binding partners are uncovered. It is also interesting to discuss the transcription factor EGR2, which is free to enter the nucleus after 14-3-3σ downregulation, where it can transcriptionally upregulate ERBB2 (16). It will also be worth examining whether 14-3-3σ loss and EGR2 upregulation play a role in human breast cancer, particularly in the “ERBB2/HER2-enriched” group, which includes not only tumors with the ERBB2 amplicon but also those only showing elevated ERBB2 RNA (25). Finally, 14-3-3σ also has an important role in regulating cell polarity via PAR3 binding, and in its absence the metastatic phenotype of the ERBB2-induced tumors was accelerated. In a previous report, Ling and colleagues (22) showed that even the adjacent “normal” mammary epithelium of the tumors arising in the ErbB2KI/14-3-3σ-null transgenics showed high methylation of the 14-3-3σ locus. If this really correlates with low levels of 14-3-3σ expression, this finding suggests that downregulation of this isoform could be one of the early changes occurring during tumorigenesis and might influence both cellular polarity and ErbB2 expression to contribute to cancer promotion. In summary, the article by Ling and colleagues (5) reveals the important tumor-suppressive role of 14-3-3σ in ERBB2 breast cancer.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Received December 1, 2011; accepted December 2, 2011; published online January 12, 2012.

REFERENCES
The 14-3-3σ Tumor Suppressor Has Multiple Functions in ErbB2-Induced Breast Cancer

Nancy E. Hynes and Tatiana Smirnova

Updated version
Access the most recent version of this article at:
http://cancerdiscovery.aacrjournals.org/content/2/1/19

Cited articles
This article cites 24 articles, 10 of which you can access for free at:
http://cancerdiscovery.aacrjournals.org/content/2/1/19.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.