In Focus

Compensatory Pathways in Oncogenic Kinase Signaling and Resistance to Targeted Therapies: Six Degrees of Separation

L. Trusolino and A. Bertotti

REVIEW

Cancer Cell Metabolism: One Hallmark, Many Faces

J.R. Cantor and D.M. Sabatini

Research Watch

Comparative Genomic Analysis of Esophageal Adenocarcinoma and Squamous Cell Carcinoma

Précis: Exomic sequencing of esophageal cancer subtypes identified geographic disparities and differences in mutation frequencies, particularly of NOTCH genes.

RESEARCH BRIEF

VEGF/Neuropilin-2 Regulation of Bmi-1 and Consequent Repression of IGF-IR Define a Novel Mechanism of Aggressive Prostate Cancer

In The Spotlight

Histology, Anatomy, or Geography? Exome Sequencing Begins to Delineate Somatic Mutational Differences in Esophageal Cancer

E.A. Collisson and R.J. Cho

Commentary on Agrawal et al., p. 899

Resiliency of Lung Cancers to EGFR Inhibitor Treatment Unveiled, Offering Opportunities to Divide and Conquer EGFR Inhibitor Resistance

C.M. Blakely and T.G. Bivona

Commentary on Ercan et al., p. 934, and Takezawa et al., p. 922

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.
HER2 Amplification: A Potential Mechanism of Acquired Resistance to EGFR Inhibition in EGFR-Mutant Lung Cancers That Lack the Second-Site EGFR^{T790M} Mutation 922

Précis: Increased HER2 expression confers resistance to EGFR tyrosine kinase inhibitors in non–small cell lung cancers with EGFR mutations.

Reactivation of ERK Signaling Causes Resistance to EGFR Kinase Inhibitors 934

Précis: Acquired resistance to EGFR inhibitors can occur through aberrant activation of ERK signaling via MAPK1 amplification or downregulation of ERK negative regulators.

Correction

Harbinski and colleagues performed a high-throughput screen of the human secretome to identify proteins capable of rescuing growth of receptor tyrosine kinase (RTK)-addicted cells following RTK inhibition and observed numerous potential ligand-mediated resistance mechanisms. Multiple human epidermal growth factor (HER) and fibroblast growth factor (FGF) ligands could rescue growth of hepatocyte growth factor (HGF) receptor (MET)-addicted cancer cells following MET inhibition, and FGFR-addicted cell lines treated with FGFR inhibitors could be rescued by HER ligands or HGF. Combination therapy modalities targeting the broad compensatory relationship between MET, FGFR, and HER ligands may thus have improved clinical efficacy. For details, please see the article by Harbinski and colleagues on page 948.

ON THE COVER

Harbinski and colleagues performed a high-throughput screen of the human secretome to identify proteins capable of rescuing growth of receptor tyrosine kinase (RTK)-addicted cells following RTK inhibition and observed numerous potential ligand-mediated resistance mechanisms. Multiple human epidermal growth factor (HER) and fibroblast growth factor (FGF) ligands could rescue growth of hepatocyte growth factor (HGF) receptor (MET)-addicted cancer cells following MET inhibition, and FGFR-addicted cell lines treated with FGFR inhibitors could be rescued by HER ligands or HGF. Combination therapy modalities targeting the broad compensatory relationship between MET, FGFR, and HER ligands may thus have improved clinical efficacy. For details, please see the article by Harbinski and colleagues on page 948.