NEWS IN BRIEF

PEOPLE

Donald Brown, MD, and Tom Maniatis, PhD, received the prestigious Lasker-Koshland Special Achievement Award in Medical Science, which carries a $250,000 honorarium, from the Albert and Mary Lasker Foundation. Established in 1945, the award honors “visionaries whose insight and perseverance have led to dramatic advances that will prevent disease and prolong life.”

Brown, director emeritus of the department of embryology at the Carnegie Institution for Science in Baltimore, MD, discovered that the nucleolus manufactures ribosomal RNAs. He also revealed, in frog embryos, the first example of gene amplification, a process that underlies other cellular activities, including the runaway growth of drug-resistant cancer cells. He later studied genes via recombinant DNA.

Maniatis, chair of the department of biochemistry and molecular biophysics at Columbia University Medical Center in New York, is highly regarded for his research on the mechanisms of gene regulation and his Molecular Cloning manual. Used by researchers worldwide, the book includes nearly every technique biologists need to manipulate DNA, many of which he pioneered.

Robin Boettcher joined the Pediatric Brain Tumor Foundation (PBTF) as chief executive officer in September. Prior to joining PBTF, Boettcher served as vice president of Chapter and Community Partnerships for the National Parkinson Foundation. She also worked as a national field director for the Leukemia & Lymphoma Society.

NCI Trials Program Seeks Net Gains

The National Cancer Institute (NCI) plans to award as much as $160.5 million in fiscal year 2014 to support a large, multi-institutional network conducting late-phase clinical research through its new National Clinical Trials Network (NCTN). The NCTN will effectively replace the NCI-sponsored Clinical Trials Cooperative Group Program, which began in 1955.

Under the restructured system, the NCI will fund up to 5 clinical trials groups—up to 4 dedicated to studying cancer in adults and 1 to cancer in children—instead of the 10 American cooperative groups it previously supported.

As a result, several of the groups recently merged to form the Alliance for Clinical Trials in Oncology (formerly Cancer and Leukemia Group B, the American College of Surgeons Oncology Group, and the North Central Cancer Treatment Group; ECOG-ACRIN (once the Eastern Cooperative Oncology Group and the American College of Radiology’s Imaging Network); and NRG Oncology (a combination of the National Surgical Adjuvant Breast and Bowel Project, Radiation Therapy Oncology Group, and Gynecologic Oncology Group). SWOG (formerly the Southwest Oncology Group) and the Children’s Oncology Group remain unchanged.

In addition, the awards will help support core services, such as quality assurance for imaging and radiation therapy used in network trials and incorporating basic and translational science into NCTN research.

“We are fundamentally changing the program so it runs as a network,” says Margaret Mooney, MD, chief of the Clinical Investigations Branch in NCI’s Division of Cancer Treatment and Diagnosis. “We hope that investigators will collaborate not only within their groups but also throughout the entire network. We want cross-fertilization between the groups.”

Plans for the NCTN developed in the wake of a 2010 Institute of Medicine report that pointed to numerous flaws in the Clinical Trials Cooperative Group System, such as its slow pace of initiating trials, difficulty in enrolling patients, and limited resources. To address those criticisms, Mooney says that the NCTN will standardize many processes by using a central patient registration system and a common data management system for collection of patient data, as well as provide support for the collection of tissue specimens.

A new reimbursement structure may make participation in clinical trials more feasible for institutions. Currently, cooperative group trials allot about $2,000 to cover costs associated with data collection for each patient enrolled in a clinical trial, which is less than the actual cost. Under the NCTN, centers that enroll a relatively large number of patients in trials will receive twice as much—about $4,000 per patient.

However, greater compensation is likely to mean that fewer trials can be performed annually, making it essential for the network to study the most important questions, says Mooney. Even so, she adds that having a more coordinated, collaborative, and efficient process will help speed critical discoveries to patients.

Nanoparticles Carry siRNA into Tumors

Of the hundreds of genes that may be overexpressed in a tumor, only a handful may be good therapeutic targets. One of the best ways to verify that a gene is a good target is to silence it in vivo, and watch for an effect on the tumor. However, genetic engineering of mice for this purpose is laborious, and screening a single gene can take from 9 months to 2 years.

William Hahn, MD, PhD, associate professor of medicine at Harvard Medical School and deputy chief scientific officer at Dana-Farber Cancer Institute in Boston, and his colleagues have uncovered many potential therapeutic targets in ovarian cancer, including a gene that codes for the transcriptional regulator ID4. This gene is amplified in 32% of high-grade ovarian cancers, and the researchers found that it could convert normal fallopian cells into cancer cells in vitro.

To establish the function of the gene in vivo, Hahn wanted to do an
NCI Trials Program Seeks Net Gains

Updated version
Access the most recent version of this article at:
doi:10.1158/2159-8290.CD-NB2012-091

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.