CONTENTS

IN THIS ISSUE

| Highlighted research articles | 1065 |

NEWS IN BRIEF

| Important news stories affecting the community | 1068 |

NEWS IN DEPTH

| Q&A: Celeste Simon on Hypoxia-Cancer Links | 1071 |
| Data Sphere Shares Clinical Trial Information | 1072 |

RESEARCH WATCH

| Selected highlights of recent articles of exceptional significance from the cancer literature | 1073 |

ONLINE

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

VIEWS

In The Spotlight

| MicroRNAs Play a Big Role in Regulating Ovarian Cancer-Associated Fibroblasts and the Tumor Microenvironment | 1078 |

J. Chou and Z. Werb

Commentary on Mitra et al., p. 1100

| Lineage-Specific Biomarkers Predict Response to FGFR Inhibition | 1081 |

D.C. Loch and P.M. Pollock

Commentary on Guagnano et al., p. 1118

| Hello Out There...Is Anybody Listening? | 1084 |

R.A. DeFilippis and T.D. Tlsty

Commentary on Kuznetsov et al., p. 1150

REVIEW

The Initial Hours of Metastasis: The Importance of Cooperative Host-Tumor Cell Interactions during Hematogenous Dissemination

M. Labelle and R.O. Hynes

1091

RESEARCH BRIEFS

MicroRNAs Reprogram Normal Fibroblasts into Cancer-Associated Fibroblasts in Ovarian Cancer

A.K. Mitra, M. Zillhardt, Y. Hua, P. Tiwari, A.E. Murmann, M.E. Peter, and E. Lengyel

1100

Précis: Changes in microRNA expression in ovarian cancer promote cancer-associated fibroblast reprogramming and induce the expression of the tumor-promoting chemokine CCL5 in fibroblasts.

Metabolomics Strategy Reveals Subpopulation of Liposarcomas Sensitive to Gemcitabine Treatment

1109

Précis: Nucleoside salvage activity in a subset of liposarcomas can be identified via PET imaging and enhances tumor response to gemcitabine.

RESEARCH ARTICLES

FGFR Genetic Alterations Predict for Sensitivity to NVP-BGJ398, a Selective Pan-FGFR Inhibitor

1118

Précis: Mutations of FGFR family members or ligands may represent stratification biomarkers that identify patients likely to respond to targeted FGFR inhibition.
Dual Roles of PARP-1 Promote Cancer Growth and Progression

Précis: PARP-1 represents a potential therapeutic target in prostate cancer due to its roles in DNA repair and regulation of androgen receptor activity.

Identification of Luminal Breast Cancers That Establish a Tumor-Supportive Macroenvironment Defined by Proangiogenic Platelets and Bone Marrow-Derived Cells

Précis: Luminal breast cancers stimulate distant tumor growth by generating a systemic protumor environment composed of activated circulating platelets and bone marrow cells.

Acknowledgment to Reviewers

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:

- Decoding ENCODE for Cancer
- Cancer Imaging Research Looks Ahead
- Compendia Goes Clinical
- Innovation for Life Science Innovators
- Hormone Levels Predict Long-term Breast Cancer Risk
- Drugmakers Struggle with Indian Patents

ON THE COVER

Braas and colleagues performed mass-spectrometry–based metabolomics to assess alternative nutrient uptake in liposarcoma and observed nucleoside consumption and elevated activity of the nucleoside salvage pathway enzyme deoxycytidine kinase (dCK) in patient-derived liposarcoma cell lines and a subset of primary liposarcoma samples. Nucleoside salvage pathway activity could be imaged in vivo by positron emission tomography (PET) using a cytidine-derived tracer, 1-{2′-deoxy-2′-[18F]fluorooarabinofuranosyl} cytosine (FAC), and enhanced the sensitivity of liposarcoma cell lines and xenograft tumors to gemcitabine, a nucleoside analogue prodrug, in a dCK-dependent manner. These results suggest that FAC–PET may identify patients with liposarcoma who will benefit from gemcitabine treatment. For details, please see the article by Braas and colleagues on page 1109.
CANCER DISCOVERY

2 (12)

Cancer Discovery 2012;2:OF18-1168.

Updated version

Access the most recent version of this article at:

http://cancerdiscovery.aacrjournals.org/content/2/12

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>