CANCER DISCOVERY CONTENTS

MARCH 2012 • VOLUME 2 • NUMBER 3

IN THIS ISSUE
Highlighted research articles.............................. 193

NEWS IN BRIEF
Important news stories affecting the community......................... 196

NEWS IN DEPTH
Q&A: Alan Auerbach on Small and Speedy Biotechs 198

Venture Capital Arms Flex Their Muscle 199

Breast Cancer Screening Goes Personalized 200

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature.................. 201

ONLINE
For more News and Research Watch, visit Cancer Discovery online at www.AACR.org/CDnews.

VIEWS
In The Spotlight

USP2a Activation of MYC in Prostate Cancer 206
W.G. Nelson, A.M. De Marzo, and S. Yegnasubramanian
Commentary on Benassi et al., p. 236

Drug Interactions: The Importance of Looking Inside Cancer Cells 208
J.W. Clark
Commentary on Frese et al., p. 260

RESEARCH BRIEF

Anti-VEGF Therapy Revived by c-Met Inhibition, But Is c-Met the Answer? 211
K.D. Lynn and R.A. Brekken
Commentary on Sennino et al., p. 270

REVIEW
Circumventing Cancer Drug Resistance in the Era of Personalized Medicine 214
L.A. Garraway and P.A. Jänne

EGFR-Mediated Reactivation of MAPK Signaling Contributes to Insensitivity of BRAF-Mutant Colorectal Cancers to RAF Inhibition with Vemurafenib 227
Précis: Combined inhibition of RAF and EGFR may be necessary to effectively suppress MAPK signaling in BRAF-mutant colorectal cancers.

RESEARCH ARTICLES

MYC Is Activated by USP2a-Mediated Modulation of MicroRNAs in Prostate Cancer 236
B. Benassi, R. Flavin, L. Marchioni, S. Zanata, Y. Pan, D. Chowdhury, M. Marani, S. Strana, P. Muti, G. Blandino, and M. Loda
Précis: Overexpression of USP2a activates MYC and promotes prostate cancer growth and invasiveness via downregulation of miR-34b/c.

Downloaded from cancerdiscovery.aacrjournals.org on July 5, 2017. © 2012 American Association for Cancer Research.
Akt/PKB-Mediated
Phosphorylation of Twist1 Promotes
Tumor Metastasis via Mediating
Cross-Talk between PI3K/Akt and
TGF-β Signaling Axes 248
G. Xue, D.F. Restuccia, Q. Lan, D. Hynx,
S. Dirnhofer, D. Hess, C. Rüegg, and B.A. Hemmings
Précis: Phosphorylation of TWIST1 by AKT
promotes EMT and metastasis via TGF-β2
transcriptional regulation and PI3K/AKT feedback
activation.

nab-Paclitaxel Potentiates
Gemcitabine Activity by Reducing
Cytidine Deaminase Levels in a
Mouse Model of Pancreatic Cancer . . . 260
K.K. Frese, A. Neesse, N. Cook, T.E. Bapiro,
M.P. Lolkema, D.I. Jodrell, and D.A. Tuveson
Précis: Combined nab-paclitaxel and gemcitabine
therapy leads to synergistic antitumor effects due
to decreased gemcitabine metabolism.

Suppression of Tumor Invasion and
Metastasis by Concurrent Inhibition of
c-Met and VEGF Signaling in Pancreatic
Neuroendocrine Tumors 270
B. Sennino, T. Ishiguro-Oonuma, Y. Wei,
R.M. Naylar, C.W. Williamson, V. Bhagwandin,
S.P. Tabruyn, W.-K. You, H.A. Chapman,
J.G. Christensen, D.T. Aftab, and D.M. McDonald
Précis: Combined inhibition of VEGF and c-MET
reduces the tumor invasiveness and metastasis
observed after inhibition of VEGF alone and
decreases tumor growth and angiogenesis.

For more News and Research Watch, visit Cancer Discovery online at www.AACR.org/CDnews. Online-only News stories include the following:

• Tracking Down Tumor-Targeting Bacteria
• Antiangiogenic Drugs Increase Xenograft Aggressiveness
• Can Chemotherapy Cause Cancer Relapse?
• Mutations, Tissue Type Both Influence Cancer Metabolism

ON THE COVER Frese and colleagues utilized a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDA) to better understand the mechanistic basis for the clinical observation that nab-paclitaxel, a water-soluble, albumin-bound form of paclitaxel, elicits synergistic antitumor activity when combined with gemcitabine, a nucleoside analogue that is the current standard of care for PDA. Combination treat-
ment with nab-paclitaxel increases intratumoral gemcitabine levels by creating an oxidative environment within the tumor that promotes degradation of cytidine de-
aminase, the primary gemcitabine metabolizing enzyme. For details, please see the
article by Frese and colleagues on page 260.