Reversing Resistance to Vascular-Disrupting Agents by Blocking Late Mobilization of Circulating Endothelial Progenitor Cells

Précis: Vascular-disrupting agents induce a late surge in circulating endothelial progenitor cells that can be blocked by antiangiogenic agents.

Kinetics of Inhibitor Cycling Underlie Therapeutic Disparities between EGFR-Driven Lung and Brain Cancers

Précis: The glioma-derived EGFRVIII mutant releases erlotinib more quickly than non-small cell lung cancer–derived EGFR-mutant alleles.

Differential Sensitivity of Glioma- versus Lung Cancer–Specific EGFR Mutations to EGFR Kinase Inhibitors

Précis: Glioma cells with extracellular domain EGFR mutations are selectively sensitive to type II EGFR inhibitors that stabilize the inactive kinase conformation.

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:

- Annotated Cell-Line Resources Speed Discovery
- Phase II Trial for Lymphoma Gives Promising Early Results
- Targeted Combo Effective for Refractory Ewing Sarcoma
- Novel PI3K Inhibitors Enter Human Studies
- An EMPaCT on Minority Recruitment
- MEK Inhibition Aids in Serous Ovarian Cancer

Vivanco and colleagues demonstrated that glioma-specific EGFR extracellular domain mutants were more sensitive to type II EGFR inhibitors (e.g., lapatinib) that stabilize an inactive kinase conformation than type I EGFR inhibitors (e.g., erlotinib) that target the active kinase conformation more commonly found in EGFR-mutant lung cancers. In a related article, Barkovich and colleagues found that the rapid release of erlotinib by glioma-specific EGFR mutants rendered them less sensitive to erlotinib than lung cancer–derived EGFR mutants. Together, these studies provide explanations for the limited success of first-generation EGFR inhibitors in treatment of EGFR-mutant gliomas and suggest alternative EGFR inhibition strategies may work best in these tumors. For details, please see the article by Vivanco and colleagues on page 458 and the article by Barkovich and colleagues on page 450.
CANCER DISCOVERY

2 (5)

Cancer Discovery 2012;2:OF7-471.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/2/5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/2/5. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>