Janus Kinase 3-Activating Mutations Identified in Natural Killer/T-cell Lymphoma

Précis: The presence of activating JAK3 mutations in 35.4% of natural killer/T-cell lymphomas suggests that JAK inhibition may be an effective therapeutic strategy.

Chimeric Transcript Generated by cis-Splicing of Adjacent Genes Regulates Prostate Cancer Cell Proliferation

Y. Zhang, M. Gong, H. Yuan, H.G. Park, H.F. Frierson, and H. Li

Précis: RNA transcription across the SLC45A3–ELK4 gene boundary results in a putative oncogenic fusion product in the absence of chromosomal rearrangements.

The HIF-1α Hypoxia Response in Tumor-Infiltrating T Lymphocytes Induces Functional CD137 (4-1BB) for Immunotherapy

Précis: Selective expression of CD137 by tumor-infiltrating lymphocytes in response to hypoxia can be targeted with anti-CD137 immunotherapy.
A Bioluminescent Transposon Reporter-Trap Identifies Tumor-Specific Microenvironment-Induced Promoters in Salmonella for Conditional Bacterial-Based Tumor Therapy 624
Précis: Tumor colonization by Salmonella and activation of Salmonella genes in response to the tumor microenvironment can be exploited for tumor-specific expression of toxic transgenes.

The Transcription Factor ZNF217 Is a Prognostic Biomarker and Therapeutic Target during Breast Cancer Progression 638
Précis: ZNF217 overexpression in breast cancer is associated with poor survival and response to neoadjuvant chemotherapy but may be a predictor of triciribine efficacy.

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:

- T-DM1 "Smart Bomb" Hits Breast Cancer Targets
- Neoadjuvant Drug Combination Eliminates Some Prostate Tumors
- BRAF and MEK Inhibitors Offer Good News in Melanoma
- Anti-PD-1 Drug Shows Strong Promise
- Pushing the Science of Prostate Screening
- Aggressive Pediatric Cancers Respond to ALK Inhibitor

ON THE COVER

Zhang and colleagues observed that transcription occurs across the boundary of 2 adjacent genes, solute carrier family 45, member 3 (SLC45A3) and ETS-domain protein SRF accessory protein 1 (ELK4), in prostate cancers in association with decreased CCCTC-binding factor (CTCF) occupancy at intergenic insulator sequences. Multiple prostate cancer cell lines were dependent on SLC45A3-ELK4 expression, and chimeric SLC45A3-ELK4 RNA levels correlated with Gleason score. These findings establish cis-splicing as a mechanism by which oncogenic gene fusions can potentially occur and implicate SLC45A3-ELK4 as a putative driver of prostate cancer development. For details, please see the article by Zhang and colleagues on page 598.
CANCER DISCOVERY

2 (7)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/2/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail alerts</td>
<td>Sign up to receive free email-alerts related to this article or journal.</td>
</tr>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>