CONTENTS

IN THIS ISSUE
- Highlighted research articles 1

NEWS IN BRIEF
- Important news stories affecting the community 4

NEWS IN DEPTH
- Q&A: Mina Bissell on Tumors as Organs 7
 Putting the Brakes on Cancer in Africa 8

RESEARCH WATCH
- Selected highlights of recent articles of exceptional significance from the cancer literature 9

ONLINE
- For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

VIEWS
In The Spotlight
- Unpicking the Combination Lock for Mutant BRAF and RAS Melanomas .. 14
 B. Al-Lazikani and P. Workman
 See article by Held et al., p. 52
- Mechanisms of Resistance to PARP Inhibitors—Three and Counting .. 20
 T. Fojo and S. Bates
 See article by Jaspers et al., p. 68
- Mutant and Wild-type Ras: Co-conspirators in Cancer 24
 T.K. Hayes and C.J. Der
 See article by Young et al., p. 112

Prospective
- The Genomic Landscape of Breast Cancer as a Therapeutic Roadmap ... 27
 M.J. Ellis and C.M. Perou

MINI REVIEW
- ARID1A Mutations in Cancer: Another Epigenetic Tumor Suppressor? ... 35
 J.N. Wu and C.W.M. Roberts

RESEARCH BRIEF
- Opposing Effects of Androgen Deprivation and Targeted Therapy on Prostate Cancer Prevention 44
 Précis: Antiandrogen therapies promote prostate cancer progression, whereas blockade of PI3K and MAPK signaling suppresses tumor growth in the context of PTEN deficiency.

RESEARCH ARTICLES
- Genotype-Selective Combination Therapies for Melanoma Identified by High-Throughput Drug Screening 52
 See commentary, p. 14
 Précis: A systematic screening approach was used to characterize inhibitor combinations that are effective in melanomas driven by specific oncogenic mutations.
- Loss of 53BP1 Causes PARP Inhibitor Resistance in Brca1-Mutated Mouse Mammary Tumors 68
 See commentary, p. 20
 Précis: PARP inhibitor resistance can arise in vivo through partial restoration of homologous recombination caused by 53BP1 inactivation.

IN THIS ISSUE

- Highlighted research articles 1

NEWS IN BRIEF

- Important news stories affecting the community 4

NEWS IN DEPTH

- Q&A: Mina Bissell on Tumors as Organs 7
 Putting the Brakes on Cancer in Africa 8

RESEARCH WATCH

- Selected highlights of recent articles of exceptional significance from the cancer literature 9

ONLINE

- For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

VIEWS

In The Spotlight

- Unpicking the Combination Lock for Mutant BRAF and RAS Melanomas .. 14
 B. Al-Lazikani and P. Workman
 See article by Held et al., p. 52
- Mechanisms of Resistance to PARP Inhibitors—Three and Counting .. 20
 T. Fojo and S. Bates
 See article by Jaspers et al., p. 68
- Mutant and Wild-type Ras: Co-conspirators in Cancer 24
 T.K. Hayes and C.J. Der
 See article by Young et al., p. 112

Prospective

- The Genomic Landscape of Breast Cancer as a Therapeutic Roadmap ... 27
 M.J. Ellis and C.M. Perou

MINI REVIEW

- ARID1A Mutations in Cancer: Another Epigenetic Tumor Suppressor? ... 35
 J.N. Wu and C.W.M. Roberts

RESEARCH BRIEF

- Opposing Effects of Androgen Deprivation and Targeted Therapy on Prostate Cancer Prevention 44
 Précis: Antiandrogen therapies promote prostate cancer progression, whereas blockade of PI3K and MAPK signaling suppresses tumor growth in the context of PTEN deficiency.

RESEARCH ARTICLES

- Genotype-Selective Combination Therapies for Melanoma Identified by High-Throughput Drug Screening 52
 See commentary, p. 14
 Précis: A systematic screening approach was used to characterize inhibitor combinations that are effective in melanomas driven by specific oncogenic mutations.
- Loss of 53BP1 Causes PARP Inhibitor Resistance in Brca1-Mutated Mouse Mammary Tumors 68
 See commentary, p. 20
 Précis: PARP inhibitor resistance can arise in vivo through partial restoration of homologous recombination caused by 53BP1 inactivation.
The mTORC1 Inhibitor Everolimus Prevents and Treats Eμ-Myc Lymphoma by Restoring Oncogene-Induced Senescence82
Précis: mTORC1-dependent bypass of MYC-induced senescence is required for the initiation and maintenance of Eμ-Myc B-cell lymphoma.

Targeting C4-Demethylating Genes in the Cholesterol Pathway Sensitizes Cancer Cells to EGF Receptor Inhibitors via Increased EGF Receptor Degradation ... 96
Précis: Sterol biosynthesis genes regulate EGFR endocytosis and signaling, and inhibition of these genes increases the efficacy of anti-EGFR therapies.

Oncogenic and Wild-type Ras Play Divergent Roles in the Regulation of Mitogen-Activated Protein Kinase Signaling 112
A. Young, D. Lou, and F. McCormick
See commentary, p. 24
Précis: Wild-type RAS isoforms regulate growth factor signaling in the context of oncogenic RAS and are required for optimal growth of cells harboring RAS mutations.

Correction
IDO Is a Nodal Pathogenic Driver of Lung Cancer and Metastasis Development 124

ON THE COVER
Young and colleagues show that oncogenic and wild-type RAS isoforms have nonredundant, independent roles in cancer cells. Oncogenic RAS isoforms desensitize cells to receptor tyrosine kinase (RTK) stimulation and promote basal mitogen-activated protein kinase (MAPK) signaling, whereas wild-type RAS isoforms are required for RTK-dependent activation of MAPK signaling and optimal growth of cancer cells expressing oncogenic RAS. Depletion of oncogenic RAS sensitizes cells to wild-type isoform-mediated growth factor signaling, uncovering a potential resistance mechanism employed by RAS-mutant cells. Combined inhibition of RAS and RTK signaling effectively blocks growth of cells expressing oncogenic RAS and may therefore be a potential approach to circumvent resistance. For details, please see the article by Young and colleagues on page 112.