In This Issue
Highlighted research articles

Research Briefs
Clinical Response to a Lapatinib-Based Therapy for a Li-Fraumeni Syndrome Patient with a Novel HER2V659E Mutation

Précis: Tumors of a patient with a germline TP53 mutation were found to harbor alterations in either EGFR or HER2 and were responsive to targeted therapy with lapatinib.

Androgen Receptor Signaling Regulates DNA Repair in Prostate Cancers

Précis: Antiandrogen therapy suppresses androgen receptor–mediated induction of DNA repair genes, resulting in increased DNA damage and enhanced radiosensitivity of prostate cancer cells.

Researchers: See commentary, p. 1222

In the Spotlight
Small RNAs Deliver a Blow to Ovarian Cancer
A. Kasinski and F.J. Slack

See article, p. 1302

Androgen Receptor Signaling Fuels DNA Repair and Radioresistance in Prostate Cancer
J. Bartek, M. Mistrik, and J. Bartkova

See article, p. 1245
See article, p. 1254

Tumor-Promoting and -Suppressive Roles of Autophagy in the Same Mouse Model of BrafV600E-Driven Lung Cancer
S. Chen and J.-L. Guan

See article, p. 1272

Research Articles
A Hormone–DNA Repair Circuit Governs the Response to Genotoxic Insult
J.F. Goodwin, M.J. Schiewer, J.L. Dean, R.S. Schrecengost, R. de Leeuw, S. Han, T. Ma, R.B. Den, A.P. Dicker, F.Y. Feng, and K.E. Knudsen

Précis: Androgen receptor activation in response to DNA damage promotes double-strand break repair via DNAPKcs and confers resistance to genotoxic insult in advanced prostate cancer.

See commentary, p. 1222

News in Brief
Important news stories affecting the community.

News in Depth
Q&A: Louis Staudt on Genomics Initiatives
Moving Ahead with Personalized Mouse Models

Research Watch
Selected highlights of recent articles of exceptional significance from the cancer literature

Online
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

Views
In The Spotlight
Small RNAs Deliver a Blow to Ovarian Cancer
Androgen Receptor Signaling Fuels DNA Repair and Radioresistance in Prostate Cancer
Tumor-Promoting and -Suppressive Roles of Autophagy in the Same Mouse Model of BrafV600E-Driven Lung Cancer

Review
Misregulation of Pre-mRNA Alternative Splicing in Cancer

Q&A: Louis Staudt on Genomics Initiatives
Moving Ahead with Personalized Mouse Models

Selected highlights of recent articles of exceptional significance from the cancer literature

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.
Strohecker and colleagues found that deletion of the essential autophagy gene Atg7 initially induced oxidative stress and accelerated the formation of Braf\(^{V600E}\)-driven lung tumors but eventually slowed tumor growth and prolonged survival. Atg7 deficiency led to an accumulation of morphologically and functionally defective mitochondria in Braf\(^{V600E}\)-driven lung tumors and rendered tumor cells dependent on exogenously supplied glutamine for survival. Braf\(^{V600E}\)-driven tumors may therefore become addicted to autophagy to sustain cell survival and proper mitochondrial function through the clearance of damaged organelles and recycling of metabolites for biosynthesis, and may thus be sensitive to autophagy inhibitors. For details, please see the article by Strohecker and colleagues on page 1272.

ON THE COVER

Strohecker and colleagues found that deletion of the essential autophagy gene Atg7 initially induced oxidative stress and accelerated the formation of Braf\(^{V600E}\)-driven lung tumors but eventually slowed tumor growth and prolonged survival. Atg7 deficiency led to an accumulation of morphologically and functionally defective mitochondria in Braf\(^{V600E}\)-driven lung tumors and rendered tumor cells dependent on exogenously supplied glutamine for survival. Braf\(^{V600E}\)-driven tumors may therefore become addicted to autophagy to sustain cell survival and proper mitochondrial function through the clearance of damaged organelles and recycling of metabolites for biosynthesis, and may thus be sensitive to autophagy inhibitors. For details, please see the article by Strohecker and colleagues on page 1272.