<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
</table>
| **IN THIS ISSUE** | Highlighted research articles 1207
| **NEWS IN BRIEF** | Important news stories affecting the community 1210
| **NEWS IN DEPTH** | Q&A: Louis Staudt on Genomics Initiatives 1213
| | Moving Ahead with Personalized Mouse Models 1214
| **RESEARCH WATCH** | Selected highlights of recent articles of exceptional significance from the cancer literature 1215
| **ONLINE** | For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.
| **VIEWS** | In The Spotlight
| | Small RNAs Deliver a Blow to Ovarian Cancer 1220
| | A. Kasinski and F.J. Slack
| | See article, p. 1302
| | Androgen Receptor Signaling Fuels DNA Repair and Radioresistance in Prostate Cancer 1222
| | J. Bartek, M. Mistrik, and J. Bartkova
| | See article, p. 1245
| | See article, p. 1254
| | Tumor-Promoting and -Suppressive Roles of Autophagy in the Same Mouse Model of BrafV600E-Driven Lung Cancer 1225
| | S. Chen and J.-L. Guan
| | See article, p. 1272
| **RESEARCH ARTICLES** | Clinical Response to a Lapatinib-Based Therapy for a Li-Fraumeni Syndrome Patient with a Novel HER2V659E Mutation 1238
| | Précis: Tumors of a patient with a germline TP53 mutation were found to harbor alterations in either EGFR or HER2 and were responsive to targeted therapy with lapatinib.
| | Androgen Receptor Signaling Regulates DNA Repair in Prostate Cancers 1245
| | Précis: Antiandrogen therapy suppresses androgen receptor-mediated induction of DNA repair genes, resulting in increased DNA damage and enhanced radiosensitivity of prostate cancer cells.
| | See commentary, p. 1222
| | A Hormone–DNA Repair Circuit Governs the Response to Genotoxic Insult 1254
| | J.F. Goodwin, M.J. Schiewer, J.L. Dean, R.S. Schrecengost, R. de Leeuw, S. Han, T. Ma, R.B. Den, A.P. Dicker, F.Y. Feng, and K.E. Knudsen
| | Précis: Androgen receptor activation in response to DNA damage promotes double-strand break repair via DNAPKcs and confers resistance to genotoxic insult in advanced prostate cancer.
| | See commentary, p. 1222

In this Issue
Highlighted research articles
News in Brief
Important news stories affecting the community
News in Depth
Q&A: Louis Staudt on Genomics Initiatives
Moving Ahead with Personalized Mouse Models
Research Watch
Selected highlights of recent articles of exceptional significance from the cancer literature
Online
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.
Views
In The Spotlight
Small RNAs Deliver a Blow to Ovarian Cancer
A. Kasinski and F.J. Slack
See article, p. 1302
Androgen Receptor Signaling Fuels DNA Repair and Radioresistance in Prostate Cancer
J. Bartek, M. Mistrik, and J. Bartkova
See article, p. 1245
See article, p. 1254
Tumor-Promoting and -Suppressive Roles of Autophagy in the Same Mouse Model of BrafV600E-Driven Lung Cancer
S. Chen and J.-L. Guan
See article, p. 1272
Research Articles
Clinical Response to a Lapatinib-Based Therapy for a Li-Fraumeni Syndrome Patient with a Novel HER2V659E Mutation
Précis: Tumors of a patient with a germline TP53 mutation were found to harbor alterations in either EGFR or HER2 and were responsive to targeted therapy with lapatinib.
Androgen Receptor Signaling Regulates DNA Repair in Prostate Cancers
Précis: Antiandrogen therapy suppresses androgen receptor-mediated induction of DNA repair genes, resulting in increased DNA damage and enhanced radiosensitivity of prostate cancer cells.
See commentary, p. 1222
A Hormone–DNA Repair Circuit Governs the Response to Genotoxic Insult
J.F. Goodwin, M.J. Schiewer, J.L. Dean, R.S. Schrecengost, R. de Leeuw, S. Han, T. Ma, R.B. Den, A.P. Dicker, F.Y. Feng, and K.E. Knudsen
Précis: Androgen receptor activation in response to DNA damage promotes double-strand break repair via DNAPKcs and confers resistance to genotoxic insult in advanced prostate cancer.
See commentary, p. 1222
Strohecker and colleagues found that deletion of the essential autophagy gene Atg7 initially induced oxidative stress and accelerated the formation of Braf\(^{V600E}\)-driven lung tumors but eventually slowed tumor growth and prolonged survival. Atg7 deficiency led to an accumulation of morphologically and functionally defective mitochondria in Braf\(^{V600E}\)-driven lung tumors and rendered tumor cells dependent on exogenously supplied glutamine for survival. Braf\(^{V600E}\)-driven tumors may therefore become addicted to autophagy to sustain cell survival and proper mitochondrial function through the clearance of damaged organelles and recycling of metabolites for biosynthesis, and may thus be sensitive to autophagy inhibitors. For details, please see the article by Strohecker and colleagues on page 1272.

Autophagy Sustains Mitochondrial Glutamine Metabolism and Growth of Braf\(^{V600E}\)-Driven Lung Tumors

Précis: Autophagy ablation suppresses the growth of Braf\(^{V600E}\)-driven lung tumors by limiting glutamine availability and impairing mitochondrial function.

See commentary, p. 1225

Targeting the Wnt Pathway in Synovial Sarcoma Models

Précis: Constitutive activation of WNT/β-catenin signaling by the SYT-SSX oncogene is required for the initiation and progression of synovial sarcoma.

See commentary, p. 1220