Clinical Response to a Lapatinib-Based Therapy for a Li-Fraumeni Syndrome Patient with a Novel HER2V659E Mutation 1238

Précis: Tumors of a patient with a germline TP53 mutation were found to harbor alterations in either EGFR or HER2 and were responsive to targeted therapy with lapatinib.

Androgen Receptor Signaling Regulates DNA Repair in Prostate Cancers 1245

Précis: Antiandrogen therapy suppresses androgen receptor–mediated induction of DNA repair genes, resulting in increased DNA damage and enhanced radiosensitivity of prostate cancer cells.

Androgen Receptor Signaling Fuels DNA Repair and Radioresistance in Prostate Cancer 1222

J. Bartek, M. Mistrik, and J. Bartkova

Précis: Androgen receptor activation in response to DNA damage promotes double-strand break repair via DNAPKcs and confers resistance to genotoxic insult in advanced prostate cancer.

Tumor-Promoting andSuppressive Roles of Autophagy in the Same Mouse Model of BrafvV600E-Driven Lung Cancer 1225

S. Chen and J.-L. Guan

Précis: Misregulation of Pre-mRNA Alternative Splicing in Cancer 1228

J. Zhang and J.L. Manley

RESEARCH ARTICLES

A Hormone–DNA Repair Circuit Governs the Response to Genotoxic Insult 1254

J.F. Goodwin, M.J. Schiewer, J.L. Dean, R.S. Schrecengost, R. de Leeuw, S. Han, T. Ma, R.B. Den, A.P. Dicker, F.Y. Feng, and K.E. Knudsen

Précis: Small RNAs Deliver a Blow to Ovarian Cancer 1220

A. Kasinski and F.J. Slack

See article, p. 1302

Androgen Receptor Signaling Fuels DNA Repair and Radioresistance in Prostate Cancer 1222

J. Bartek, M. Mistrik, and J. Bartkova

See article, p. 1245

See article, p. 1254

In The Spotlight

Small RNAs Deliver a Blow to Ovarian Cancer 1220

A. Kasinski and F.J. Slack

See article, p. 1302

Androgen Receptor Signaling Fuels DNA Repair and Radioresistance in Prostate Cancer 1222

J. Bartek, M. Mistrik, and J. Bartkova

See article, p. 1245

See article, p. 1254

Tumor-Promoting andSuppressive Roles of Autophagy in the Same Mouse Model of BrafvV600E-Driven Lung Cancer 1225

S. Chen and J.-L. Guan

See article, p. 1272

Misregulation of Pre-mRNA Alternative Splicing in Cancer 1228

J. Zhang and J.L. Manley

See article, p. 1272

RESEARCH BRIEFS

Clinical Response to a Lapatinib-Based Therapy for a Li-Fraumeni Syndrome Patient with a Novel HER2V659E Mutation 1238

Précis: Tumors of a patient with a germline TP53 mutation were found to harbor alterations in either EGFR or HER2 and were responsive to targeted therapy with lapatinib.

Androgen Receptor Signaling Regulates DNA Repair in Prostate Cancers 1245

Précis: Antiandrogen therapy suppresses androgen receptor–mediated induction of DNA repair genes, resulting in increased DNA damage and enhanced radiosensitivity of prostate cancer cells.

See commentary, p. 1222

A Hormone–DNA Repair Circuit Governs the Response to Genotoxic Insult 1254

J.F. Goodwin, M.J. Schiewer, J.L. Dean, R.S. Schrecengost, R. de Leeuw, S. Han, T. Ma, R.B. Den, A.P. Dicker, F.Y. Feng, and K.E. Knudsen

Précis: Androgen receptor activation in response to DNA damage promotes double-strand break repair via DNAPKcs and confers resistance to genotoxic insult in advanced prostate cancer.

See commentary, p. 1222

Q&A: Louis Staudt on Genomics Initiatives 1213

Moving Ahead with Personalized Mouse Models 1214

RESEARCH WATCH

Selected highlights of recent articles of exceptional significance from the cancer literature 1215

ONLINE

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

IN THE SPOTLIGHT
Strohecker and colleagues found that deletion of the essential autophagy gene Atg7 initially induced oxidative stress and accelerated the formation of Braf\(^{V600E}\)-driven lung tumors but eventually slowed tumor growth and prolonged survival. Atg7 deficiency led to an accumulation of morphologically and functionally defective mitochondria in Braf\(^{V600E}\)-driven lung tumors and rendered tumor cells dependent on exogenously supplied glutamine for survival. Braf\(^{V600E}\)-driven tumors may therefore become addicted to autophagy to sustain cell survival and proper mitochondrial function through the clearance of damaged organelles and recycling of metabolites for biosynthesis, and may thus be sensitive to autophagy inhibitors. For details, please see the article by Strohecker and colleagues on page 1272.

ON THE COVER

Strohecker and colleagues found that deletion of the essential autophagy gene Atg7 initially induced oxidative stress and accelerated the formation of Braf\(^{V600E}\)-driven lung tumors but eventually slowed tumor growth and prolonged survival. Atg7 deficiency led to an accumulation of morphologically and functionally defective mitochondria in Braf\(^{V600E}\)-driven lung tumors and rendered tumor cells dependent on exogenously supplied glutamine for survival. Braf\(^{V600E}\)-driven tumors may therefore become addicted to autophagy to sustain cell survival and proper mitochondrial function through the clearance of damaged organelles and recycling of metabolites for biosynthesis, and may thus be sensitive to autophagy inhibitors. For details, please see the article by Strohecker and colleagues on page 1272.