IN THIS ISSUE

<table>
<thead>
<tr>
<th>Highlighted research articles</th>
<th>1207</th>
</tr>
</thead>
</table>

NEWS IN BRIEF

<table>
<thead>
<tr>
<th>Important news stories affecting the community</th>
<th>1210</th>
</tr>
</thead>
</table>

NEWS IN DEPTH

<table>
<thead>
<tr>
<th>Q&A: Louis Staudt on Genomics Initiatives</th>
<th>1213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moving Ahead with Personalized Mouse Models</td>
<td>1214</td>
</tr>
</tbody>
</table>

RESEARCH WATCH

<table>
<thead>
<tr>
<th>Selected highlights of recent articles of exceptional significance from the cancer literature</th>
<th>1215</th>
</tr>
</thead>
</table>

ONLINE

<table>
<thead>
<tr>
<th>For more News and ResearchWatch, visit Cancer Discovery online at http://CDnews.aacrjournals.org</th>
<th></th>
</tr>
</thead>
</table>

VIEWS

<table>
<thead>
<tr>
<th>In The Spotlight</th>
<th></th>
</tr>
</thead>
</table>

Research Briefs

Clinical Response to a Lapatinib-Based Therapy for a Li-Fraumeni Syndrome Patient with a Novel HER2 V659E Mutation

Précis: Tumors of a patient with a germline TP53 mutation were found to harbor alterations in either EGFR or HER2 and were responsive to targeted therapy with lapatinib.

Androgen Receptor Signaling Regulates DNA Repair in Prostate Cancers

Précis: Antiandrogen therapy suppresses androgen receptor–mediated induction of DNA repair genes, resulting in increased DNA damage and enhanced radiosensitivity of prostate cancer cells.

See commentary, p. 1222

A Hormone–DNA Repair Circuit Governs the Response to Genotoxic Insult

J.F. Goodwin, M.J. Schiewer, J.L. Dean, R.S. Schrecengost, R. de Leeuw, S. Han, T. Ma, R.B. Den, A.P. Dicker, F.Y. Feng, and K.E. Knudsen

Précis: Androgen receptor activation in response to DNA damage promotes double-strand break repair via DNAPKcs and confers resistance to genotoxic insult in advanced prostate cancer.

See commentary, p. 1222

RESEARCH ARTICLES

<table>
<thead>
<tr>
<th>Small RNAs Deliver a Blow to Ovarian Cancer</th>
<th>1220</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Kasinski and F.J. Slack</td>
<td></td>
</tr>
</tbody>
</table>

See article, p. 1302

<table>
<thead>
<tr>
<th>Androgen Receptor Signaling Fuels DNA Repair and Radiosensitivity in Prostate Cancer</th>
<th>1222</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Bartek, M. Mistrik, and J. Bartkova</td>
<td></td>
</tr>
</tbody>
</table>

See article, p. 1245

See article, p. 1254

<table>
<thead>
<tr>
<th>Tumor-Promoting and -Suppressive Roles of Autophagy in the Same Mouse Model of Braf V600E-Driven Lung Cancer</th>
<th>1225</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Chen and J.-L. Guan</td>
<td></td>
</tr>
</tbody>
</table>

See article, p. 1222

<table>
<thead>
<tr>
<th>Misregulation of Pre-mRNA Alternative Splicing in Cancer</th>
<th>1228</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Zhang and J.L. Manley</td>
<td></td>
</tr>
</tbody>
</table>

See article, p. 1222

RESEARCH BRIEFS

Clinical Response to a Lapatinib-Based Therapy for a Li-Fraumeni Syndrome Patient with a Novel HER2 V659E Mutation

Précis: Tumors of a patient with a germline TP53 mutation were found to harbor alterations in either EGFR or HER2 and were responsive to targeted therapy with lapatinib.

Androgen Receptor Signaling Regulates DNA Repair in Prostate Cancers

Précis: Antiandrogen therapy suppresses androgen receptor–mediated induction of DNA repair genes, resulting in increased DNA damage and enhanced radiosensitivity of prostate cancer cells.

See commentary, p. 1222

A Hormone–DNA Repair Circuit Governs the Response to Genotoxic Insult

J.F. Goodwin, M.J. Schiewer, J.L. Dean, R.S. Schrecengost, R. de Leeuw, S. Han, T. Ma, R.B. Den, A.P. Dicker, F.Y. Feng, and K.E. Knudsen

Précis: Androgen receptor activation in response to DNA damage promotes double-strand break repair via DNAPKcs and confers resistance to genotoxic insult in advanced prostate cancer.

See commentary, p. 1222

In The Spotlight

Small RNAs Deliver a Blow to Ovarian Cancer

A. Kasinski and F.J. Slack

See article, p. 1302

Androgen Receptor Signaling Fuels DNA Repair and Radiosensitivity in Prostate Cancer

J. Bartek, M. Mistrik, and J. Bartkova

See article, p. 1245

See article, p. 1254

Tumor-Promoting and -Suppressive Roles of Autophagy in the Same Mouse Model of Braf V600E-Driven Lung Cancer

S. Chen and J.-L. Guan

See article, p. 1222

Misregulation of Pre-mRNA Alternative Splicing in Cancer

J. Zhang and J.L. Manley

See article, p. 1222
Autophagy Sustains Mitochondrial Glutamine Metabolism and Growth of BrafV600E-Driven Lung Tumors 1272

Précis: Autophagy ablation suppresses the growth of BrafV600E-driven lung tumors by limiting glutamine availability and impairing mitochondrial function.

See commentary, p. 1225

Targeting the Wnt Pathway in Synovial Sarcoma Models 1286

Précis: Constitutive activation of WNT/β-catenin signaling by the SYT-SSX oncogene is required for the initiation and progression of synovial sarcoma.

Therapeutic Synergy between microRNA and siRNA in Ovarian Cancer Treatment 1302

Précis: Combined inhibition of EPHA2 using siRNA and miR-520d-3p synergistically suppresses ovarian cancer tumorigenesis.

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:

- Database Covers Cell Line/Compound Interactions
- Finasteride Doesn’t Shorten Survival in Long-term Study
- Abraxane Approved for Metastatic Pancreatic Cancer
- Response-Guided Neoadjuvant Approach Offers Benefits
- Three More Drugs Judged “Breakthroughs”
- Institute of Medicine Calls for Improved Evidence Base

ON THE COVER

Strohecker and colleagues found that deletion of the essential autophagy gene Atg7 initially induced oxidative stress and accelerated the formation of BrafV600E-driven lung tumors but eventually slowed tumor growth and prolonged survival. Atg7 deficiency led to an accumulation of morphologically and functionally defective mitochondria in BrafV600E-driven lung tumors and rendered tumor cells dependent on exogenously supplied glutamine for survival. BrafV600E-driven tumors may therefore become addicted to autophagy to sustain cell survival and proper mitochondrial function through the clearance of damaged organelles and recycling of metabolites for biosynthesis, and may thus be sensitive to autophagy inhibitors. For details, please see the article by Strohecker and colleagues on page 1272.