RESEARCH WATCH

Signaling

Major finding: Phosphorylation of wild-type BRAF on Ser729 by AMPK suppresses MEK/ERK signaling.
Mechanism: BRAF Ser729 phosphorylation disrupts binding to KSR1 and promotes binding to 14–3–3.
Impact: AMPK activators may prevent paradoxical ERK activation by BRAF inhibitors in BRAF–wild-type cells.

AMPK PHOSPHORYLATES AND NEGATIVELY REGULATES BRAF

AMP-activated kinase (AMPK) is a critical regulator of energy homeostasis that is activated in response to low cellular energy levels. AMPK is thought to coordinate cellular energy status with cell growth and proliferation, but the underlying mechanisms are not completely clear. Shen and colleagues found that AMPK significantly attenuated MEK–ERK signaling in BRAF–wild-type cells by physically associating with BRAF and directly phosphorylating serine 729 (Ser729), which in turn led to decreased ERK activation. Phosphorylation of Ser729 had no effect on BRAF kinase catalytic activity, but blocked BRAF–mediated signaling by promoting an inhibitory interaction between BRAF and 14–3–3 proteins and disrupting the association between BRAF and the scaffolding protein KSR1, which facilitates phosphorylation of MEK by RAF. AMPK activation blocked cell cycle progression in keratinocytes expressing wild-type BRAF, whereas mutation of the Ser729 residue led to a significant increase in proliferation rates, further indicating that phosphorylation of Ser729 by AMPK negatively regulates BRAF–dependent mitogenic signaling. Given these findings, the authors hypothesized that AMPK activation might be a potential strategy to combat paradoxical MEK–ERK activation caused by BRAF inhibitors in BRAF–wild-type cells, a phenomenon that leads to the development of secondary cutaneous squamous cell carcinomas and keratoacanthomas in some patients with BRAF-mutant metastatic melanoma. Indeed, combined treatment with the AMPK activator phenformin and the BRAF inhibitor PLX4720 significantly reduced epidermal hyperplasia in mice in association with reduced ERK phosphorylation. The identification of AMPK as a BRAF Ser729 kinase provides a link between cellular energy status and proliferation and raises the possibility that combined use of AMPK activators with BRAF inhibitors may mitigate the paradoxical MEK–ERK activation that has been associated with secondary malignancies and drug resistance.

Epigenetics

Major finding: NSD1 mutations are recurrent in pediatric ALL and induce a distinct chromatin signature.
Approach: Quantitative mass spectrometry was used to measure bulk histone modification levels across cell lines.
Impact: Chromatin profiling can reveal the epigenetic consequences of genetic or chemical perturbations.

CHROMATIN PROFILING UNCOVERS A RECURRING MUTATION IN PEDIATRIC ALL

The epigenomes of cancer cells are commonly altered, but efforts to comprehensively study epigenetic changes in cancer cells have been hindered by the limited availability of antibodies capable of recognizing specific histone modifications. Jaffe and colleagues devised a mass spectrometry–based method to simultaneously quantify levels of multiple histone modifications in bulk chromatin and used this technique to profile 42 distinct histone H3 modifications in a subset of hematologic cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE). Unsupervised clustering grouped the data into six chromatin states, with one distinguished by increased H3 lysine 36 dimethylation (H3K36me2) and lower levels of unmodified H3K36. Six of the thirteen cell lines in this cluster harbored a t(4;14) translocation that leads to the overexpression of the H3K36 methyltransferase nuclear receptor SET domain-containing 2 (NSD2; also known as MMSET). However, the remaining cell lines did not have a t(4;14) translocation, prompting an analysis of the genomic features of these cell lines. Remarkably, each one harbored an NSD2 coding variant that resulted in an E1099K substitution in the NSD2 SET domain. The E1099K protein had increased methyltransferase activity in vitro, and its expression in an NSD2-deficient cell line increased H3K36me3 dimethylation in association with increased anchorage-independent growth. NSD2 mutations were enriched in pediatric acute lymphoblastic leukemia (ALL) cell lines in the CCLE, and growth and tumorigenicity of these cells were dependent on NSD2. Exon sequencing of NSD2 in a larger set of pediatric cancers identified NSD2 mutations in 7.5% of B-cell ALLs (B-ALL) overall and 20% of ETV6–RUNX1-positive B-ALL samples. These findings, which implicate NSD2-dependent H3K36 hypermethylation as a driving event in a subset of pediatric ALLs, highlight the potential of mass spectrometry chromatin profiling to rapidly uncover epigenetic consequences of cancer-associated mutations.

Chromatin Profiling Uncovers a Recurring Mutation in Pediatric ALL

Updated version Access the most recent version of this article at: doi:10.1158/2159-8290.CD-RW2013-222

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.