From Differences in Means
between Cases and Controls
to Risk Stratification:
A Business Plan for Biomarker
Development 148
N. Wentzensen and S. Wacholder

Inhibiting EGF Receptor or
SRC Family Kinase Signaling
Overcomes BRAF Inhibitor
Resistance in Melanoma 158
M.R. Girotti, M. Pedersen,
B. Sanchez-Laorden, A. Viros, S. Turajlic,
D. Niculescu-Duvaz, A. Zambon, J. Sinclair,
A. Hayes, M. Gore, P. Lorigan, C. Springer,
J. Larkin, C. Jorgensen, and R. Marais
Précis: Activation of an EGF–SRC
family kinase signaling axis contributes
to intrinsic and acquired vemurafenib
resistance in BRAF-mutant melanoma.

Noncovalent Wild-type–Sparing
Inhibitors of EGFR T790M 168
H.-J. Lee, G. Schaefer, T.P. Heffron,
L. Shao, X. Ye, S. Sideris, S. Malek,
E. Chan, M. Merchant, H. La, S. Ubhayakar,
R.L. Y auch, V . Pirazzoli, K. Politi, and
J. Settleman
Précis: Clinically available indolocarbazole
analogues reversibly inhibit the EGFR
T790M mutant without affecting wild-
type EGFR.
See commentary, p. 138

Maximizing the Benefits
of Off-Target Kinase Inhibitor
Activity 138
M.R. Brewer and W. Pao
See article, p. 168

Mitotic Control of Cancer
Stem Cells 141
M. Venere, T.E. Miller, and J.N. Rich
See article, p. 198

Activating Mutations in HER2:
Neu Opportunities and Neu
Challenges 145
B. Weigelt and J.S. Reis-Filho
See article, p. 224

Senescence Sensitivity of Breast
Cancer Cells Is Defined by Positive
Feedback Loop between CIP2A
and E2F1 182
A. Laine, H. Sihto, C. Come, M.T. Rosenfeldt,
A. Zwolinska, M. Niemelä, A. Khanna, E.K. Chan,
V.-M. Kähäri, P.-L. Kellokumpu-Lehtinen,
O.J. Sansom, G.J. Evan, M.R. Junttila,
K.M. Ryan, J.-C. Marine, H. Joensuu, and
J. Westermarck
Précis: An E2F1–CIP2A feedback loop
downstream of p53 or p21 inactivation
prevents senescence induction in
breast cancer cells and contributes to
chemotherapeutic resistance.
Cancer-Specific Requirement for BUB1B/BUBR1 in Human Brain Tumor Isolates and Genetically Transformed Cells 198

Précis: Oncogenic transformation can induce short interkinetochore distances and confer dependence on the mitotic protein BUB1B.

See commentary, p. 141

Antagonism of Inhibitor of Apoptosis Proteins Increases Bone Metastasis via Unexpected Osteoclast Activation 212

Précis: IAP antagonists induce alternative NF-κB signaling and osteoclast activity to promote bone metastasis, thus limiting their efficacy as antitumor agents.

Activating HER2 Mutations in HER2 Gene Amplification Negative Breast Cancer 224

Précis: Gain-of-function HER2 mutations were identified in breast cancers lacking HER2 gene amplification and retained sensitivity to the irreversible kinase inhibitor neratinib.

See commentary, p. 145

Bose and colleagues functionally characterized 13 somatic HER2 mutations identified by genome sequencing in breast cancers lacking HER2 gene amplification. Protein structure analysis showed that these mutations largely clustered in either the HER2 tyrosine kinase or extra-cellular domain. Many of these were gain-of-function mutations that enhanced HER2 kinase activity and downstream signaling, promoted anchorage-independent growth, and accelerated tumor formation, suggesting that HER2 mutations may be driver events in breast cancer. Although several mutations conferred resistance to lapatinib, all mutations were sensitive to the irreversible HER2 kinase inhibitor neratinib. These findings suggest that patients with HER2 mutation-positive breast cancer may benefit from HER2-targeted therapies. For details, please see the article by Bose and colleagues on page 224.

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:

- Ibrutinib Impresses in Early Trials
- NCAB Gains New Members
- EMA Boosts Transparency for Trials
- Cancer Screening Participation Shows Some Dips
- Proton Therapy Appears to Be Less Cost-Effective
- Study Reveals Global Shifts in Causes of Death