was effective in patients after their cancers had become resistant to multiple TKIs or exhibited the T3151 mutation that resistant cancers acquire.

Ponatinib produced a major cytogenetic response (MCyR) in 56% (149 out of 267) of the chronic-phase CML patients in the trial and a complete cytogenetic response in 46%. Results for accelerated- and blast-phase patients were also favorable. Pancreatitis was the most common serious side effect, but only 1 patient dropped out of the trial because of it.

Ponatinib was designed to be an especially sticky molecule that could sneak under the bulky isoleucine residue of the “gatekeeper” T3151 mutation that keeps the other TKIs from binding to the BCR–ABL fusion protein, Cortes says.

The drug produced “very deep and very rapid” responses that were not isolated to just a few groups of patients, notes Jorge E. Cortes, MD, professor of medicine at the University of Texas MD Anderson Cancer Center in Houston, who reported on PACE. “These responses happen regardless of the stage of the disease and regardless of the presence or absence of mutations.”

The results presented at the ASH meeting extended findings presented at the American Society of Clinical Oncology annual meeting in June 2012 to include a full year of data from patients taking a 45-mg ponatinib pill daily. PACE’s latest results show that ponatinib has worked as planned, achieving MCyR in 70% (45 of 64) of the patients whose cancers have the T3151 mutation. Moreover, 57% (38 of 67) of those patients with other mutations and 49% (66 of 136) with no detectable mutations also achieved MCyR.

One important question to be answered is whether ponatinib will become a first-line therapy. ARIAD Pharmaceuticals in Cambridge, MA, started a multicenter phase III trial in June that will compare ponatinib and imatinib (Gleevec; Novartis) side by side as first-line CML drugs.

In addition to imatinib, the other TKIs previously approved for CML are bosutinib (Bosulif; Pfizer), dasatinib (Sprycel; Bristol-Myers Squibb), and nilotinib (Tasigna; Novartis). The growing selection of TKIs means doctors can tailor treatment to patients,tors and patients can now choose.

Detecting Cancer by Cell-free DNA

Researchers at Johns Hopkins University have provided a proof in principle that it may be feasible to detect cancer with whole-genome sequencing technology applied to cell-free DNA found in blood samples.

The scientists took blood samples from 10 healthy people and 10 patients who had late-stage colorectal or breast cancer and sequenced circulating cell-free DNA in the blood (Sci Transl Med 2012;162:162ra154). The researchers identified structural rearrangements or copy number changes in the blood DNA of all of the cancer patients; they did not find these changes in blood DNA from healthy subjects.

“This approach is highly specific for detecting cancer,” says Victor Velculescu, MD, PhD, a coauthor of the study and professor of oncology and codirector of the Cancer Biology Program at Johns Hopkins in Baltimore, MD. He says that existing blood tests for cancer depend on protein levels that can rise and fall based on events other than tumor growth, whereas the DNA changes that he and his colleagues found exist only in cancer cells. Velculescu also points out that there are many types of cancer for which researchers have yet to find a validated circulating protein marker.

Previous studies required samples of the original tumor and knowledge of the mutations in that tumor to find the same changes in blood DNA. The new technique eliminates the need for

\[\text{In a phase II trial, ponatinib produced a major cytogenetic response in 56% of patients with chronic-phase chronic myeloid leukemia.} \]

\[\text{Cortes says, drawing a comparison with the array of drugs for the treatment of hypertension from which doctors and patients can now choose.} \]

\[\text{NOTED} \]

- In 2012, the U.S. Food and Drug Administration approved 13 new drugs that target cancer.
- “Cancers claimed 8.0 million lives in 2010, 15.1% of all deaths worldwide, with large increases [since 1990] in deaths from trachea, bronchus, and lung cancers, twice the number of deaths from the next 2 common sites for mortality (liver and stomach),” reported the researchers of the Global Burden of Disease Study 2010 (Lancet 2012;380:2095–128).
- Overall U.S. cancer death rates dropped by 1.8% per year for men, 1.4% for women, and 1.8% for children from 2000 to 2009, according to the 2013 Annual Report to the Nation on the Status of Cancer. Total cancer incidence rates declined by 0.6% per year for men, remained stable for women, and increased by 0.6% per year for children during that period.
- President Barack Obama signed the Recalcitrant Cancer Research Act into law. Originally known as the Pancreatic Cancer Research and Education Act, the bill mandates that the National Cancer Institute evaluate its efforts in dealing with recalcitrant cancers with certain survival rates, and focus on ways to improve outcomes.
- Nine of 12 leukemia patients treated with infusions of chimeric antigen receptor-modified T cells responded to the therapy, scientists in the Perelman School of Medicine at the University of Pennsylvania reported at the American Society of Hematology’s annual meeting in December in Atlanta, GA. Two of the first 3 patients treated in the protocol remain healthy and in full remission more than 2 years after their treatment, the Perelman researchers reported.
- “More than 85% of the global burden of cervical cancer occurs in developing countries, where it accounts for 13% of all female cancers,” noted Dayin Oluwole, MD, FRCP, executive director of the Pink Ribbon Red Ribbon initiative at the George W. Bush Foundation in Dallas, TX. “Despite these staggering statistics, fewer than 5% of women are screened even once in their lifetimes.”
original tumor samples; in fact, the scientists found changes that could potentially guide anticancer drug choices. They identified amplification of 2 known oncogenes, including ERBB2, which is targeted by trastuzumab (Herceptin; Genentech), in a colon cancer patient.

Velculescu says larger clinical trials will be needed to determine the best applications of this approach. The team has started looking at patients with early-stage tumors to see how useful the technique will be in that setting. They believe this effort may be more challenging than it has been with advanced tumors because a smaller amount of circulating DNA may be produced by cancers at an early stage. The researchers are also working with tumor types other than breast and colorectal and have found chromosomal changes in circulating DNA in every type of cancer they’ve looked at so far.

Harnessing the Crowd

Following an approach that’s already widespread in such fields as astronomy and aviation, cancer scientists recently showcased results from a pair of open-source computational research challenges that drew input from investigators worldwide. The results were presented at the seventh annual DREAM (Dialogue for Reverse Engineering Assessments and Methods) conference in San Francisco, CA, in November.

Open-source, or crowdsourcing, challenges aim to solve specific research problems by exploiting the collective wisdom and resources of the scientific community.

The first challenge, sponsored by the National Cancer Institute (NCI), tasked researchers with developing a computational model for ranking the response of breast cancer and lymphoma cell lines to drug treatment. A total of 51 research teams participated, with the winners hailing from Aalto University in Helsinki, Finland, and the University of Texas Southwestern Medical Center in Dallas.

In a second challenge, still ongoing and sponsored by Sage Bionetworks, in Seattle, WA, 354 research teams are developing models for predicting breast cancer survival based on clinical and genomic data.

Dan Gallaham, PhD, deputy director of the NCI’s Division of Cancer Biology, says crowdsourcing augments traditional research, which tends to be more open ended and constrained by publication priorities. “What we get from these challenges are solutions to specific scientific problems,” he says. “Ideally, as scientists refine these models, we’ll be able to use algorithms for prescribing specific drugs or drug combinations based on a patient’s molecular profile.”

NCI incentivized scientists with a guarantee that the winning model would be published in Nature Biotechnology.

The winners of the Sage challenge have been promised a publication in Science Translational Medicine about their computational model. Sage Bionetworks has been ranking models with an accuracy score that appears on a public leaderboard. This method allows teams to compare how their efforts stack up. Additionally, because the scores link back to a model’s publicly available underlying code, scientists can combine analytical approaches and build off each other’s work, explains Thea Norman, PhD, Sage’s director of strategic development.

“We had one person with a strong clinical background borrow code from someone with a background in machine learning, and the model from that collaboration scored highest on the leaderboard,” Norman says.

Synthetic Biomarkers Identify Early Cancer

Using protease-susceptible peptides that result in breakdown products that can be measured in urine, researchers at Massachusetts Institute of Technology (MIT) in Cambridge, MA, believe they have created a way to detect cancer much earlier than is possible with current technologies that depend on blood tests, biopsies, or imaging.

Many types of cancer and a variety of other diseases, such as atherosclerosis, could be found with this new detection method, says Gabriel Kwong, PhD, a researcher in the laboratory of Sangeeta Bhatia, MD, PhD, at MIT and lead author of an article describing the technique in mouse models of colorectal cancer and liver fibrosis (Nature Biotechnology 2012;31:63–70).

Early on, cancer and many other conditions produce abnormal protease activity that is not easily detectable by current means. Kwong and colleagues suggest, though, that peptides susceptible to the cleaving power of those proteases will yield fragments shed into the urine that can serve as indicators of nascent disease. Without “interrogating” cells in this way, notes Kwong, “you are really depending on what the disease cells give you.”

Kwong and his colleagues wonnowed about 50 candidate peptides down to 10 by testing their response to recombinant versions of proteases commonly expressed by diseased cells. They used strings of iron oxide nanoparticles, or “nanoworms,” to ferry the sacrificial peptides to the diseased tissue in mice.

However, because the peptides can be sliced and diced in any number of ways, Kwong attached D isomer–rich derivatives of glutamate-fibrinopeptide B to the peptides so they cleave in a regular way. This allowed them to be measured with mass spectrometry and interpreted as signals of disease-associated protease activity. He also developed a coding system for classifying those peptide fragments into the 10 easily identifiable types.

In the colorectal cancer model, Kwong and his team tested the synthetically generated peptide fragments against carcinoembryonic antigen (CEA), a blood biomarker of colorectal cancer. Tumors that produced measurable amounts of the synthetic biomarkers were 60% smaller than those that produced measurable amounts of CEA.

In this diagram, iron oxide “nanoworms” (brown) are coated with peptides (blue) that are cleaved by enzymes (green) found at the disease site. Accumulating in the urine, the peptides can be detected with mass spectrometry.