Activating HER2 Mutations in HER2 Gene Amplification Negative Breast Cancer

Ron Bose1,2, Shyam M. Kavuri1, Adam C. Searleman1, Wei Shen1, Dong Shen3, Daniel C. Koboldt3, John Monsey1, Nicholas Goel1, Adam B. Aronson1, Shunqiang Li1,2, Cynthia X. Ma1,2, Li Ding1,2,3,4, Elaine R. Mardis2,3,4, and Matthew J. Ellis1,2

ABSTRACT

Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755–759, which is homologous to EGFR receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment.

SIGNIFICANCE: We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation-positive breast cancers could benefit from existing HER2-targeted drugs. Cancer Discov; 3(2); 224–37. © 2013 AACR.

INTRODUCTION

Functional characterization of cancer-associated genetic alterations has led to new therapeutic approaches that have dramatically improved patient outcomes. Examples of this include trastuzumab and lapatinib for HER2 gene amplification-positive breast cancer, EGFR receptor (EGFR) tyrosine kinase inhibitors for EGFR-mutant lung cancers, and imatinib, nilotinib, and dasatinib for BCR-ABL gene fusion in chronic myelogenous leukemias (1). Cancer genome-sequencing studies are identifying novel cancer-associated genetic alterations at an unprecedented rate, but the functional consequences of these genetic alterations are known only in a few cases (2).

HER2 gene amplification is a major therapeutic target in breast cancer and it is the clinical criterion for the use of U.S. Food and Drug Administration-approved, HER2-targeted drugs, which currently are trastuzumab, pertuzumab, and lapatinib (3). Additional HER2-targeted drugs undergoing clinical trials include neratinib, an irreversible HER2/EGFR tyrosine kinase inhibitor, and trastuzumab-DM1, an antibody–drug conjugate (4). We and others have recently identified HER2 somatic mutations in HER2 gene amplification-negative breast cancer patients through cancer genome sequencing (5–12). If these HER2 somatic mutations are driver events in breast cancer, then these patients may benefit from existing HER2-targeted drugs. In this study, we characterize 13 HER2 somatic mutations using multiple experimental methods. The sensitivity of these mutations to several HER2-targeted drugs was tested to provide critical preclinical data for HER2 sequencing-directed breast cancer clinical trials.
RESULTS

Identification of HER2 Somatic Mutations in Patients without HER2 Gene Amplification

We identified 2 breast cancer patients with HER2 somatic mutations by conducting next generation, massively parallel sequencing on DNA samples accrued in the American College of Surgeons Oncology Group Z1031 clinical trial (Fig. 1A; ref. 5). These 2 cancers, code numbers 15687 and 16757, were classified as HER2 negative by the Z1031 trial based on standard clinical tests for HER2 gene amplification, which are HER2 FISH and HER2 immunohistochemistry. To find more breast cancer cases with HER2 somatic mutations, The Cancer Genome Atlas (TCGA) breast cancer project sequencing data was searched and 7 additional patients with HER2 somatic mutations were identified (Fig. 1A; ref. 6). Six of these patients were classified as HER2 negative by TCGA and one patient, TCGA-C8-A135, was HER2 positive on the basis of 3+ HER2 immunohistochemical (IHC) score. We searched further for patients with breast cancer with HER2 mutations by carefully reviewing 6 other breast cancer–sequencing studies (Supplementary Table S1; refs. 7–12). These studies contained 16 more cases of HER2 somatic mutations; thus, a total of 25 patients with breast cancer with HER2 somatic mutations have been identified to date. Several recurrent mutations were found, including G309A/E, S310F, L755S, in-frame deletion of residues 755–759 (abbreviated del.755–759), D769H/Y, and V777L (Fig. 1B). By examining the location of these mutations in the HER2 domain structure (Fig. 1B), we found that these mutations clustered in 2 major areas, with 20% of patients (5/25) having extracellular domain (ECD) mutations at residues 309–310 and 68% of patients (17/25) having kinase domain mutations between residues 755–781.

To confirm that these cancers did not have HER2 gene amplification, we checked the read counts from the next generation DNA sequencing (Fig. 1C and D). Patient 15687 had diploid HER2 gene copy number in her tumor and normal DNA (Fig. 1C). Patient 16757 had focused sequencing of only 25 genes and therefore, the read counts cannot be used to estimate gene copy number here. Read counts for all 507 patients in the TCGA (Fig. 1D) showed that the majority of cancers clustered at 2 HER2 gene copies, and a subset of patients had increased HER2 gene copy number along with increased HER2 expression, as measured by the TCGA microarray data (data points in top right corner of Fig. 1D). Of the 7 TCGA patients with HER2 somatic mutations, only one patient, TCGA-C8-A135, had evidence for HER2 gene amplification by the sequencing read counts, and this correlates well with the 3+ HER2 IHC score obtained in this patient.

To determine whether these HER2 mutations were expressed, we searched the next generation RNA sequencing data (RNA-seq) on patients in the TCGA and conducted reverse transcription-PCR (RT-PCR) and Sanger sequencing on tumor RNA from patients 15687 and 16757 (Fig. 1A and E). RNA-seq data was available on 6 of the patients in the TCGA and in all 6 cases, the mutant allele was detected. In 5 cases, the mutant HER2 allele expression accounted for 51% to 76% of the read counts, showing that this is likely a heterozygous mutation, whereas in patient TCGA-A8-A06Z, the mutant HER2 allele was only 16% of the total read counts (Fig. 1A). For patients 15687 and 16757,
Figure 1. HER2 somatic mutations in breast cancer. A, clinical information on patients with HER2 somatic mutations. ER, estrogen receptor; PR, progesterone receptor. B, HER2 somatic mutations observed in 25 patients are shown. Blue circles represent each case of the indicated mutation. Two patients had 2 HER2 somatic mutations each, resulting in a total of 27 mutations in 25 patients. del.755–759* indicates that 2 patients had del.755–759 and one patient had del.755–759 with a S760A change. ECD, extracellular domain; JM, juxtamembrane region; SNP, single-nucleotide polypeptide TM, transmembrane region; WT, wild type. C, HER2 gene copy number in patient 15687, who has V777L mutation. X axis values represent the genomic position on chromosome 17, with numbering based on the March 2006 human reference sequence (NCBI Build 36.1/hg18). D, the exome sequencing-based copy number, as determined by VarScan 2 (45), for the ERBB2 gene and the level 3 gene expression values from the Agilent 244K Custom Gene Expression 4502A-07-03 platform are plotted. The red data points and the arrows to them indicate the patients with HER2 somatic mutations. E, expression of mutant allele in tumors harboring HER2 mutations by Sanger sequencing of patient mRNA samples.

<table>
<thead>
<tr>
<th>Patient code</th>
<th>HER2 mutation</th>
<th>Stage</th>
<th>Path, type and grade</th>
<th>ER</th>
<th>PR</th>
<th>HER2 status (per ACOSOG trial or TCGA)</th>
<th>HER2 IHC</th>
<th>HER2 FISH ratio</th>
<th>Mutant allele reads</th>
<th>WT allele reads</th>
<th>Percent of reads from mutant allele</th>
</tr>
</thead>
<tbody>
<tr>
<td>15687 (BRC14)</td>
<td>V777L</td>
<td>IIB</td>
<td>Ductal, Grade 3</td>
<td>+</td>
<td>+</td>
<td>Negative</td>
<td>2+</td>
<td>1.9</td>
<td>see Fig. 1E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16757</td>
<td>del.755–759</td>
<td>IIB</td>
<td>Ductal, Grade 2</td>
<td>+</td>
<td>+</td>
<td>Negative</td>
<td>1+</td>
<td>see Fig. 1E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCGA-A8-A0AB</td>
<td>L755S</td>
<td>IIA</td>
<td>Lobular</td>
<td>+</td>
<td>+</td>
<td>Negative (confirmed by SNP chip)</td>
<td>2+</td>
<td>Not available (sample from commercial source)</td>
<td>864</td>
<td>745</td>
<td>53.7%</td>
</tr>
<tr>
<td>TCGA-BH-A18P</td>
<td>L755S</td>
<td>I</td>
<td>Ductal</td>
<td>+</td>
<td>–</td>
<td>Negative (confirmed by SNP chip)</td>
<td>2+</td>
<td>2.05</td>
<td>509</td>
<td>164</td>
<td>75.6%</td>
</tr>
<tr>
<td>TCGA-C8-A135</td>
<td>D769H</td>
<td>IIB</td>
<td>Ductal</td>
<td>–</td>
<td>–</td>
<td>Positive</td>
<td>3+</td>
<td>2099</td>
<td>1280</td>
<td>62.1%</td>
<td></td>
</tr>
<tr>
<td>TCGA-BH-A10C1</td>
<td>V777L</td>
<td>IIA</td>
<td>Lobular</td>
<td>+</td>
<td>+</td>
<td>Negative</td>
<td>0</td>
<td>253</td>
<td>143</td>
<td>63.9%</td>
<td></td>
</tr>
<tr>
<td>TCGA-A8-A06Z</td>
<td>V842I</td>
<td>IIIB</td>
<td>Lobular</td>
<td>+</td>
<td>+</td>
<td>Negative</td>
<td>1+</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>TCGA-A8-A06Z</td>
<td>G309A</td>
<td>IIIB</td>
<td>Lobular</td>
<td>+</td>
<td>+</td>
<td>Negative</td>
<td>1+</td>
<td>80</td>
<td>416</td>
<td>16.1%</td>
<td></td>
</tr>
<tr>
<td>TCGA-A2-A0T6</td>
<td>R678Q + L755W</td>
<td>IIIA</td>
<td>Lobular</td>
<td>+</td>
<td>+</td>
<td>Negative</td>
<td>1+</td>
<td>569</td>
<td>538</td>
<td>51.4% for R678Q</td>
<td></td>
</tr>
<tr>
<td></td>
<td>608</td>
<td>585</td>
</tr>
</tbody>
</table>
RNA samples from their tumor were obtained and reverse transcription (RT) PCR was conducted to amplify the region of the HER2 mRNA containing the predicted mutation. These PCR products were subjected to Sanger sequencing and for both cases, expression of both the mutant and WT allele was clearly detectable (Fig. 1E). These data unequivocally show that the HER2 somatic mutations are being expressed at the RNA level.

HER2 Protein Structure Visualization and Comparison of Breast Cancer HER2 Mutations with Previously Described Kinase Mutations

We will first consider the mutations clustering at amino acid (aa) residues 755-781, which is in the tyrosine kinase domain of HER2. These mutations either flank or are within the aC helix of the kinase domain (Fig. 2A and B). The HER2 780-781 insertion mutation has been previously described in non–small cell lung cancer (NSCLC), but the rest of the breast cancer HER2 somatic mutations were distinct from HER2 mutations found in NSCLC (13-15). The HER2 in-frame deletion of aa 755-759 (del.755–759) matches the EGFR exon 19 deletions found in NSCLC, which are known activating mutations that confer sensitivity to the EGFR tyrosine kinase inhibitor, gefitinib (16-18).

The HER2 V777L mutation is homologous to ALK F1174L and EGFR V769L mutations (Fig. 2A, mutations indicated by a star on the multisequence alignment). ALK F1174L is a known activating mutation found in neuroblastoma (19-21). EGFR V769L is a rare NSCLC-associated mutation, but to our knowledge, no functional studies on it have yet been reported (22). HER2 V777 and EGFR V769 residues were visualized by superimposing crystal structures of the active conformation of EGFR kinase domain with an inhibitor-bound conformation of HER2 kinase domain (Fig. 2C). There are only 2 crystal structures of HER2 kinase domain available, and both contain kinase inhibitors and represent an identical, inhibitor-bound conformation (23, 24). In contrast, at least 40 crystal structures on the EGFR kinase domain are available and these represent the active, inactive, and inhibitor-bound conformations (25). To understand the various conformations that HER2 kinase domain is likely to adopt in vivo, we used an EGFR kinase domain active conformation crystal structure and the HER2 inhibitor-bound crystal structure (Fig. 2C). In the EGFR-active conformation, the V769 side chain abuts the F856 side chain (distance 4.9 Å), which is part of the conserved DFG motif. Similarly, ALK...
F1174 is known to pack against F1271 of ALK’s DFG motif, matching the EGFR crystal structure (26). Because the Asp residue in the DFG motif is part of the kinase catalytic site and the Phe residue in DFG forms part of the regulatory spine of the EGFR kinase domain (25), we infer that EGFR V769L and HER2 V777L mutations will likely affect tyrosine kinase activity.

The HER2 L755S mutation is a known lapatinib resistance mutation and it was initially identified from an in vitro mutagenesis screen (27, 28). The HER2 L755 side chain is in close proximity to the binding site for small-molecule kinase inhibitors (Fig. 2D), thus explaining how mutations at this residue could produce drug resistance. The remaining mutations in the kinase domain (Y835F, V842I, and R896C) occur in the C-lobe (Fig. 2B) and each of these mutations was found only in single patient to date. A striking finding is that no activation loop (A-loop) mutations are found in these patients with breast cancer. A-loop mutations are a major group of kinase domain mutations found in cancer, with prominent examples including EGFR L858R, BRAF V600E, and ALK R1275Q (16–18, 26, 29). The absence of these patients with breast cancer. A-loop mutations in breast cancer underscores the differences between the mutation spectrum seen here versus in other cancer types.

Mutations in the ECD of HER2 are found at aa 309 and 310 (Figs. 1B and 2E). By modeling the ECDs of a HER2–EGFR heterodimer, it is clear that HER2 G309 and S310 contact the dimerization arm of EGFR. HER2 G309 abuts the EGFR M253 side chain with a distance of 4.1 Å from the α-carbon to the terminal carbon of the M253 side chain (not shown). Mutations at these residues are also found in NSCLC, and a recent publication showed that HER2 G309E and S310F are activating mutations when introduced into NIH 3T3 fibroblasts, AALE human airway epithelial cells, and Ba/F3 murine lymphoid cell line (30).

Effect on Tyrosine Kinase Activity and Cellular Signaling

In vitro kinase assays were conducted on the HER2 kinase domain mutations using recombinant expression of the isolated HER2 kinase domain (31). In this system, the activity of monomeric or dimeric HER2 can be compared (31, 32). Wild-type (WT) HER2 showed a 2.3-fold increase in kinase activity upon in vitro dimerization (Fig. 3A). All 3 mutations tested here, HER2 V777L, D769H, and V842I, had greater tyrosine kinase–specific activity than wild-type (WT), with further increases seen with in vitro dimer formation. While the V842I had the lowest activity of these 3 mutations, it did show a statistically significant increase over WT HER2. The L755S and del.755–759 mutations were poorly expressed and could not be assayed in this system.

To assess the effect of HER2 mutations on signal transduction pathways, retroviral vectors were used to transduce mutant or WT HER2 into MCF10A (Fig. 3B), MCF7 (Fig. 3C), and NIH 3T3 (Supplementary Fig. S1) cells. MCF10A cells are nontransformed breast epithelial cell line, which express endogenous EGFR and require supplementary EGF in their media (33, 34). MCF10A cells are widely used as a model for oncogenic transformation and tumorigenesis in breast cancer (33, 35). MCF7 cells are an estrogen receptor–positive breast cancer cell line and constitute a model for hormone receptor–positive breast cancer. MCF7 cells have high levels of endogenous HER3, but low levels of endogenous EGFR and HER2 (34). NIH 3T3 cells are a fibroblast cell line that has been extensively used to study oncogenes and they lack or have very low levels of endogenous EGFR, HER2, and HER3 (36, 37). Using these cell lines, we measured HER2 autophosphorylation and phosphorylation of HER2’s dimerization partners (EGFR or HER3) and downstream signaling proteins [phospholipase γ C1, PLCγ, and mitogen-activated protein kinase (MAPK)]. PLCγ is a well-characterized HER2 and EGFR substrate protein and provides a direct measurement of HER2 and EGFR substrate phosphorylation (37).

The V777L, D769H, and V842I mutations strongly increased phosphorylation of all signaling proteins in all 3 cell lines, indicating that these are activating mutations (Fig. 3B and C and Supplementary Fig. S1). D769H had a particularly strong effect on HER3 phosphorylation in MCF7 cells (Fig. 3C). HER2 L755S increased HER2 and EGFR phosphorylation in MCF10A cells (Fig. 3B) and HER2, PLCγ, and MAPK in MCF7 cells (Fig. 3C), but it did not increase HER2 or PLCγ phosphorylation in NIH 3T3 cells (Supplementary Fig. S1). The del.755–759 mutation showed a marked increase in EGFR phosphorylation in MCF10A cells and HER3 and MAPK in MCF7 cells, but did not increase HER2 and PLCγ phosphorylation in any of the 3 cell lines (Fig. 3B and C and Supplementary Fig. S1). This suggests that HER2 del.755–759 may interact differently with its dimerization partners, EGFR and HER3, and have a greater dependence on them than the other HER2 mutants do. In all 3 cell lines, R678Q and G309A showed little effect on protein phosphorylation. To ensure that the mutant HER2 proteins are being expressed on the cell surface, we conducted flow cytometry on the retrovirally transduced MCF10A cells and observed that the cell surface HER2 expression correlated well with the total HER2 levels measured by Western blot analysis (Supplementary Fig. S2 and Fig. 3B). Consistent with prior reports on an NSCLC–associated HER2 mutation (30), the HER2 mutations that strongly activate signaling showed lower amount of total HER2 as compared with WT (Fig. 3B, total HER2 blot with shorter exposure).

The HER2 L755S was previously shown to produce lapatinib resistance in mammalian cells (27, 28), and we, therefore, tested the lapatinib sensitivity of MCF10A-HER2 V777L and L755S cells. MCF10A-HER2 V777L cells were sensitive to lapatinib with reduced HER2 autophosphorylation seen at 50 nmol/L and complete inhibition observed with 500 nmol/L lapatinib (Fig. 3D). In contrast, L75SS required doses of 1 μmol/L lapatinib or more to inhibit HER2 signaling, but it was sensitive to the irreversible tyrosine kinase inhibitors, neratinib (Fig. 3D) and canertinib (CI-1033, Supplementary Fig. S3). Complete inhibition of signaling by HER2 L755S was observed even at the lowest dose of neratinib used here (50 nmol/L).

Effect on Cell Growth in Matrigel and Soft Agar

To assess growth effects in 3-dimensional (3D) cultures, MCF10A cells transduced with mutant or WT HER2 were
Figure 3. HER2 mutations differentially activate HER2 signaling. A, HER2 WT or mutant kinase domain constructs were recombinantly expressed and assayed in vitro. Fold change relative to HER2 WT monomer is indicated above each bar. * = P < 0.01. B, MCF10A cells were retrovirally transduced with HER2 WT or the respective mutants and lysates were probed with the indicated antibodies. Bar graphs represent quantification of Western blots bands, which was conducted with Bio-Rad ChemiDoc XRS system or ImageJ software. C, MCF7 cells were retrovirally transduced with HER2 WT or the respective mutants and lysates were probed and quantified as in B. (continued on following page)
seeded into Matrigel. As previously reported (35), MCF10A-HER2 WT cells formed spherical structures (Fig. 4A, top left). MCF10A cells bearing HER2 V777L, D769H, V842I, or G309A mutations formed irregular structures with spiculated, invading protrusions (Fig. 4A, top row). Addition of the HER2 antibody trastuzumab restored the spherical morphology to these mutations (Fig. 4A, middle row). HER2 L755S, del.755–759, and R678Q formed spherical structures, similar to WT HER2. MCF10A cells are an EGF-dependent cell line and addition of lapatinib, a dual HER2/EGFR inhibitor, blocked the growth of MCF10A-HER2 WT cells (Fig. 4A, bottom row). Most of the HER2-mutant cells were also growth inhibited by lapatinib, but L75SS and del.755–759 were resistant to lapatinib and continued to form large spherical structures. L75SS and del.755–759 were sensitive to the irreversible inhibitor, neratinib (Fig. 4B). The del. 755–759 mutation was also sensitive to gefitinib, consistent with the idea that this mutation is more dependent upon a heterodimerization partner, such as EGFR, for its functional effects (Figs. 3B and C and 4B).

The above experiment (Fig. 4A and B) was conducted by seeding the cells in the presence or absence of drugs. To mimic the situation with established tumors, we also conducted drug treatment of MCF10A-HER2 cells after allowing them to form invasive colonies (Supplementary Fig. S4). Treatment with lapatinib and neratinib inhibited the growth of these invasive colonies. We also tested the ability of these HER2 mutations to promote the anchorage-independent growth of MCF10A cells by conducting soft agar colony assays and quantifying the number of colonies using image analysis software (Supplementary Fig. S5 and Fig. 4C). V777L, V842I, and G309A increased the number of colonies formed in soft agar as compared with WT (Fig. 4C). While D769H did not produce a statistically significant increase in number of colonies, it did result in the formation of larger colonies, as seen in the photomicrographs of the soft agar colonies (Fig. 4D). MCF10A cells transduced with L75SS, del.755–759, and R678Q formed fewer colonies than HER2 WT cells. Lapatinib treatment decreased the number of colonies formed in all mutations, except for L75SS. In fact, a small but statistically significant increase in colony number was seen with lapatinib treatment of L75SS as compared with vehicle (Supplementary Fig. S5), which may be due to persistent EGFR signaling in the presence of a lapatinib-resistant form of HER2. In contrast, neratinib produced a strong inhibition of colony formation for all mutations, including L75SS (Fig. 4C and D).

Effect on Tumor Growth in Xenograft Models

The ability of the HER2 mutations to increase tumor formation in xenografts was tested (Fig. 5). NIH3T3-HER2 WT cells served as the control cell line. NIH3T3-HER2 V777L, D769H, and G309A-mutant cell lines had more rapid tumor growth than the HER2 WT control (P values all <0.01). The L75SS, V842I, and R678Q cells showed tumor growth indistinguishable from the HER2 WT control cells (Fig. 5A and B). The NIH3T3-HER2 del.755–759 cells formed tumors slower than NIH3T3-HER2 WT cells (Fig. 5C and D). NIH3T3 cells have low levels of endogenous EGFR and HER3 (36, 37) and because the del.755–759 mutation seems to be more dependent on a heterodimeric partner like EGFR, the tumor formation ability of del.755–759 may be decreased in NIH3T3 cells. Similarly, MCF7-HER2 V777L cells formed tumors more rapidly in nude mice than MCF7-HER2 WT cells (Supplementary Fig. S6), indicating that HER2 mutations can increase tumor formation in this cell line as well. The strong effect of HER2 G309A seen in the tissue culture and xenograft experiments (Figs. 4 and 5) was surprising given the small effect of this mutation on HER2 phosphorylation (Fig. 3B and C). However, Greulich and colleagues (30) recently showed that HER2 G309E can increase HER2 dimerization without increasing HER2 phosphorylation.

Inhibition of Cell Growth by Neratinib and Lapatinib

Given the effectiveness of neratinib and lapatinib seen above, we measured the IC₅₀ values of these 2 HER2/EGFR tyrosine kinase inhibitors on MCF10A-HER2 cells (Table 1). BT474 cells, a HER2 gene-amplified cell line, served as the positive control and the IC₅₀ value of less than 2 nmol/L with neratinib and 31 nmol/L with lapatinib match previously published values (38, 39). MCF7 cells served as the negative control and were not sensitive to either inhibitor. MCF10A cells bearing mutant or WT HER2 were potently growth inhibited by neratinib (Table 1). In contrast, lapatinib doses of 400 to 1,000 nmol/L were required to inhibit growth of most of these mutations. The MCF10A-HER2 L75SS cells were resistant to lapatinib (IC₅₀ > 10 μmol/L) but could be readily inhibited by neratinib (IC₅₀ of 15 nmol/L).
Figure 4. HER2 mutations V777L, D769H, V842I, G309A induce gain-of-function over HER2 WT in MCF10A mammary epithelial cells.

A. HER2 WT or mutants were seeded on 3D Matrigel culture in the presence or absence of DMSO vehicle (0.5%), trastuzumab (100 μg/mL), or lapatinib (0.5 μmol/L). Phase contrast images of acini or invasive structures were obtained at ×200 magnification on day 8. KD, kinase domain; JM, juxtamembrane region; ECD, extracellular domain.

B. HER2 WT, L755S, and del.755–759 cells were grown in Matrigel in the presence of DMSO vehicle (0.5%), neratinib (0.5 μmol/L) or gefitinib (0.5 μmol/L). Phase contrast images were obtained as in **A.**

C. MCF10A-HER2 WT or mutants were seeded in soft agar. After 7 days of growth, they were treated with DMSO vehicle (0.5%), lapatinib (0.5 μmol/L) or neratinib (0.5 μmol/L) for an additional week. Error bars represent 95% highest posterior density intervals. *, Significant difference between the HER2 mutant and HER2 WT; #, the effect of inhibitor treatment was significant (95% highest posterior density interval did not contain 0 for both).

D. Photomicrographs of the colonies in soft agar on day 12, magnification ×40.
Figure 5. HER2 mutants V777L, G309A, D769H formed tumors more rapidly than HER2 WT. A, a total of 0.5×10^6 cells of NIH3T3 expressing either HER2 WT or mutant were injected in the flanks of nude mice, $n=5$ mice for each construct. Tumor size was measured every 2 to 3 days. A linear mixed effects model was fit to the logarithm of tumor volumes to statistically test whether HER2 mutants grew faster than HER2 WT. *, $P < 0.01$. B, photographs were taken on day 11. C, NIH3T3 cells expressing HER2 WT, G309A, or del.755–759 were injected into nude mice as in A, $n=3$ mice for G309A and WT and $n=4$ mice for del.755–759. *, $P < 0.01$. D, photographs taken on day 12.

is an irreversible inhibitor of EGFR and HER2 and it has been used to treat gefitinib-resistant lung cancers that contain the EGFR T790M mutation (40).

Characterization of Six Additional HER2 Somatic Mutations

In June 2012, additional breast cancer sequencing studies were published and several new HER2 somatic mutations were identified (Supplementary Table S1; refs. 10–12). Therefore, we tested 6 more HER2 somatic mutations using the above assays. D769Y, P780ins, and R896C increased the in vitro kinase activity of HER2 (Fig. 6A). All 6 mutations were introduced into MCF10A cells using retroviral vectors. HER2 Y835F showed decreased in vitro kinase activity and cells bearing this mutation showed no indication of oncogenic transformation and grew slower than HER2 WT cells. Therefore, this mutation was not analyzed further. The D769Y, P780ins, and R896C mutations increased HER2, EGFR, and PLC\gamma phosphorylation in MCF10A cells (Fig. 6B and C), and these mutations produced colonies with irregular structures and spiculated, invading protrusions in 3D Matrigel culture (Fig. 6D). D769Y and R896C mutations were sensitive to trastuzumab and lapatinib, but the growth and invasive appearance of cells bearing the P780ins mutation was not affected by either of these drugs. In contrast, neratinib inhibited the growth of all the mutations tested here (Fig. 6D).
Activating HER2 Mutations in Breast Cancer

Table 1. Inhibition of cell growth by neratinib and lapatinib

<table>
<thead>
<tr>
<th>IC50 (nmol/L)</th>
<th>Neratinib</th>
<th>Lapatinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF10A - HER2 WT</td>
<td><2</td>
<td>400 ± 60</td>
</tr>
<tr>
<td>G309A</td>
<td><2</td>
<td>470 ± 50</td>
</tr>
<tr>
<td>V777L</td>
<td><2</td>
<td>1,040 ± 570</td>
</tr>
<tr>
<td>D769H</td>
<td><2</td>
<td>980 ± 950</td>
</tr>
<tr>
<td>V842I</td>
<td><2</td>
<td>650 ± 210</td>
</tr>
<tr>
<td>del.755–759</td>
<td>2.1 ± 0.2</td>
<td>660 ± 90</td>
</tr>
<tr>
<td>L755S</td>
<td>15 ± 6</td>
<td>>10,000</td>
</tr>
<tr>
<td>BT474 cells</td>
<td><2</td>
<td>31 ± 2</td>
</tr>
<tr>
<td>MCF7 cells</td>
<td>>3,000</td>
<td>>10,000</td>
</tr>
</tbody>
</table>

NOTE: Cells were incubated with drugs for 6 days, and cell viability and number were measured using Alamar Blue.

Structural visualizations of these mutations show that P780ins, D769Y, I767M, and S760A flank or occur in the αC helix (Fig. 2A and B). The S760A mutation is not an independent mutation and, in fact, occurs as part of the del.755–759 mutation, thus, it is not surprising that S760A has no effect on its own. The finding of strong activation by D769Y is very revealing. When combined with the results on D769H shown above (Figs. 3–5), we can infer that either the loss of the acidic side chain or the addition of an aromatic ring (either Y or H) at aa 769 must activate the HER2 tyrosine kinase. Visualisation of a HER2-HER3 kinase domain dimer (Supplementary Fig. S7) shows several hydrophobic residues in close proximity to HER2 D769. These residues include HER2 Y772 and HER3 residues I919 and M923 (HER3 numbering as per PDB: 3KEX). We postulate that the D769H/Y mutations may increase hydrophobic contacts in this area, which would thereby increase HER2 dimerization.

DISCUSSION

In this study, we functionally characterized 13 HER2 somatic mutations so that we could group them into several different phenotypes. Seven of these 13 are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. When we combine these results with a recent functional study on the HER2 G309E and S310F mutations (30), we estimate that 13 of 25 patients identified here have activating HER2 mutations that are likely driver events in their cancer. One mutation, L755S, showed a lapatinib-resistant phenotype, but it did not cause oncogenic transformation. Because 6 of 25 patients (25%) have L755S somatic mutations, we anticipate that these cases will be lapatinib resistant but may respond to neratinib. One mutation, del.755–759, had a neomorphic phenotype, with increased phosphorylation of HER2’s heterodimerization partners, EGFR and HER3. This somatic mutation was found in 3 of 25 patients and its clinical effect on these breast cancer cases will need to be determined. HER2 del.755–759 is homologous to EGFR exon 19 deletions, which produce gefitinib-sensitive NSCLC, and, therefore, it is likely that this HER2 mutation is also influencing breast cancer biology. Three mutations (R678Q, I767M, and Y835F) showed no functional effect in our assays and these mutations were found in 2 patients (the R678Q mutation cooccurred with L755W in patient TCGA-A2-A0T6). Two mutations (L755W and G1201V) have not been functionally tested yet, and we anticipate that with further HER2 gene sequencing, the number of mutations that require characterization will grow.

Can we predict a priori which of these HER2 mutations will have a functional effect? These results suggest that recurrence is a good predictor of functional effect, as all of the recurrent mutations examined here had an effect on HER2 function and cell behavior. However, some of the mutations that were just found in one patient, such as P780ins, V842I, and R896C, exhibited functional effects as well. Furthermore, recurrence did not predict the phenotype of the mutation (activating, drug resistant, or neomorphic). Therefore, the presence of recurrence in these HER2 mutations tends to predict a functional effect, but lack of recurrence cannot be used to rule out an effect by the mutation. Another criterion that can be considered is whether the mutation is a conservative amino acid substitution. Among this panel of HER2 mutations, we find that whether the amino acid change is a conservative substitution does not predict whether the mutation will have a functional effect. Val to Leu (V777L), Gly to Ala (G309A), and Val to Ile (V842I) were all activating mutations, whereas Tyr to Phe (Y835F), Ile to Met (I767M), and Ser to Ala (S760A) all had no functional effect. It seems that protein structure and conformation makes a large contribution to the functional effect of the mutation, with conservative substitutions occurring in critical locations for the protein (such as V777L in the proximity of the kinase domain DFG motif and G309A in the ECD dimerization arm contact surface) having a large effect on HER2. We acknowledge that these inferences are based only on the HER2 results obtained here, and are not necessarily generalizable.

Several HER2-targeted drugs were tested on these mutations. We observed that neratinib was a very potent inhibitor for all of the HER2 mutations. Lapatinib was less potent and was not effective in reducing the growth of cells bearing L755S or P780ins mutation. Trastuzumab did reduce the formation of gefitinib-sensitive NSCLC, and therefore, it is likely that this HER2 mutation is also influencing breast cancer biology. Three mutations (R678Q, I767M, and Y835F) showed no functional effect in our assays and these mutations were found in 2 patients (the R678Q mutation cooccurred with L755W in patient TCGA-A2-A0T6). Two mutations (L755W and G1201V) have not been functionally tested yet, and we anticipate that with further HER2 gene sequencing, the number of mutations that require characterization will grow.

Can we predict a priori which of these HER2 mutations will have a functional effect? These results suggest that recurrence is a good predictor of functional effect, as all of the recurrent mutations examined here had an effect on HER2 function and cell behavior. However, some of the mutations that were just found in one patient, such as P780ins, V842I, and R896C, exhibited functional effects as well. Furthermore, recurrence did not predict the phenotype of the mutation (activating, drug resistant, or neomorphic). Therefore, the presence of recurrence in these HER2 mutations tends to predict a functional effect, but lack of recurrence cannot be used to rule out an effect by the mutation. Another criterion that can be considered is whether the mutation is a conservative amino acid substitution. Among this panel of HER2 mutations, we find that whether the amino acid change is a conservative substitution does not predict whether the mutation will have a functional effect. Val to Leu (V777L), Gly to Ala (G309A), and Val to Ile (V842I) were all activating mutations, whereas Tyr to Phe (Y835F), Ile to Met (I767M), and Ser to Ala (S760A) all had no functional effect. It seems that protein structure and conformation makes a large contribution to the functional effect of the mutation, with conservative substitutions occurring in critical locations for the protein (such as V777L in the proximity of the kinase domain DFG motif and G309A in the ECD dimerization arm contact surface) having a large effect on HER2. We acknowledge that these inferences are based only on the HER2 results obtained here, and are not necessarily generalizable.

Several HER2-targeted drugs were tested on these mutations. We observed that neratinib was a very potent inhibitor for all of the HER2 mutations. Lapatinib was less potent and was not effective in reducing the growth of cells bearing L755S or P780ins mutation. Trastuzumab did reduce the formation of gefitinib-sensitive NSCLC, and therefore, it is likely that this HER2 mutation is also influencing breast cancer biology. Three mutations (R678Q, I767M, and Y835F) showed no functional effect in our assays and these mutations were found in 2 patients (the R678Q mutation cooccurred with L755W in patient TCGA-A2-A0T6). Two mutations (L755W and G1201V) have not been functionally tested yet, and we anticipate that with further HER2 gene sequencing, the number of mutations that require characterization will grow.
Figure 6. HER2 kinase domain mutations differentially activate HER2 signaling, induce an invasive phenotype, and respond to HER2-targeted drugs.

A, Six additional HER2 kinase domain mutations were tested by in vitro kinase assay. Fold change relative to HER2 WT monomer is indicated above each bar. *, *<0.01. B, MCF10A cells were retrovirally transduced with HER2 WT or the respective mutants and lysates were probed with the indicated antibodies.

C, quantitation of Western blots from B. D, HER2 WT or mutants were seeded on 3D Matrigel culture in the presence of DMSO vehicle (0.5%), trastuzumab (100 μg/mL), lapatinib (0.5 μmol/L), or neratinib (0.5 μmol/L). Phase contrast images of acini or invasive structures were obtained at ×200 magnification on day 6.

4,000 patients annually. This is at par with the annual U.S. incidence of chronic myelogenous leukemia (5,150 patients annually; ref. 43), a disease for which extensive drug development and clinical trials have been carried out. Lobular breast cancer may have an increased frequency of HER2 somatic mutations, but the numbers of cases sequenced to date is small [3 patients with lobular breast cancer with HER2 somatic mutation among 39 lobular breast cases in the TCGA study and 3 patients with HER2 mutations among 113 lobular cases in Shah and colleagues; ref. 6, 8]. Furthermore, the breast cancer genome-sequencing studies cited here have focused on newly diagnosed patients. The HER2 mutation frequency in relapsed or metastatic breast cancer patients is currently unknown and potentially could be higher than 1.6%. Because of the low mutation rate, prospective clinical trials using HER2 gene-sequencing results will need to screen a large number of patients and the cooperation of many academic institutions and treatment centers is essential.

Potential limitations of this study include the fact that retroviral transduction of HER2 mutations does produce HER2 protein overexpression. We compared the level of HER2 expression in the virally transduced cells with BT474 cells, which have HER2 gene amplification, to ensure that our experiments were carried out under HER2 levels that are appropriate for breast cancer studies. Furthermore, all experiments compared the effect of the mutant allele with WT HER2 to determine whether there was an effect of the mutation, above and beyond that seen with increased HER2 expression alone. A second issue is that this study does not address whether HER2 mutations occur in HER2 gene-amplified patients.
Recombinant HER2 kinase domain proteins were purified to 70% to 80% purity using Ni-NTA-agarose beads, as per ref. (31). Radioactive kinase assays were conducted either with kinases in solution (monomers) or attached to the surface of a liposome to induce matrix dimerization, as detailed in our prior publication (31). Statistical analysis of the in vitro kinase assay was conducted with Student t test. Protein structural alignments and visualizations were conducted using PyMol (DeLano Scientific).

Cloning and Retroviral Transduction of Mutant and WT HER2 into Cell Lines

HER2 somatic mutations were introduced into the HER2 domain using the QuikChange II kit (Agilent) and the desired constructs were verified by Sanger sequencing. His-tagged HER2 WT and mutant kinase domain constructs were expressed using baculovirus vectors as per the Bac-to-Bac system (Life Technologies). Recombinant HER2 kinase domain proteins were purified to 70% to 80% purity using Ni-NTA-agarose beads, as per ref. (31). Radioactive kinase assays were conducted either with kinases in solution (monomers) or attached to the surface of a liposome to induce matrix dimerization, as detailed in our prior publication (31). Statistical analysis of the in vitro kinase assay was conducted with Student t test. Protein structural alignments and visualizations were conducted using PyMol (DeLano Scientific).

Three-Dimensional Culture in Matrigel

Overlay 3D culture of MCF-10A cells in Matrigel was conducted as described previously (33). Briefly, 4 × 10^5 MCF10A cells expressing mutant or HER2 WT were seeded in growth factor–reduced Matrigel (BD Biosciences) in 8-well chamber slides. Lapatinib, neratinib, trastuzumab, or dimethyl sulfoxide (DMSO) vehicle was added at time of seeding or on day 4. Media was changed every 4 days and photomicrographs were obtained on day 5–8.

Soft Agar Colony Forming Assay

Six-well plates were first layered with 0.6% bacto agar in MCF10A growth medium. After the solidification of bottom layer, a top layer containing 5 to 10 × 10^5 MCF10A cells per well of HER2 WT or mutants were suspended in MCF10A medium supplemented with 5% to 10% of bacto calf serum and 1% P/S. Inhibition of cell growth by lapatinib and neratinib was measured by Alamar Blue, as per ref. (44) and IC50 values calculated by a 4 parameter nonlinear regression conducted using SigmaPlot 2001 software (Systat Software, Inc.).

Antibodies and Inhibitors

Antibodies were purchased from Cell Signaling Technologies: phospho PLCγ (Tyr783), PLCγ phospho HER3 (Y1289), phospho EGFR (Tyr1173), EGFR, phospho p44/42 MAPK (Thr202/Tyr204), and p44/42 MAPK. Phospho HER2 (pY1248) and HER3 antibody was from Millipore. HER2 monoclonal antibody (Ab-17) is from Thermo Fisher. Trastuzumab was obtained from the Barnes-Jewish Hospital pharmacy (St. Louis, MO). Lapatinib and canertinib were obtained from Selleckchem.

ERBB2 Gene Copy and Expression Level in TCGA Breast Cancer Project Data

Level 3 gene expression values from the Agilent 244K Custom Gene Expression 450A0-07-03 platform were downloaded from the TCGA data portal on February 2, 2012. Exome-based copy number values from the TCGA Breast Cancer Project Data are available at dbGAP and the VarScan 2 algorithm (45). The plot for Supplementary Fig. S1 was generated with the R statistical package, version 2.13.1 (July 8, 2011).
Colony number and size were determined using ImageJ version 1.46r. Every plate was processed simultaneously by adding each plate image into a single stack and converted to an 8-bit image. Background subtraction with a rolling ball with a 10-pixel radius was found to remove most background while preserving colony number. A circular region of interest was formed over the first lapatinib-treated HER2 WT plate and used as input to enhance contrast assuming 0.001% saturated pixels to normalize the image stack. The image stack was thresholded to 180 and converted to a binary image. Colonies were split using watershed processing with default parameters. Each well was then pasted into slices of a new image stack and major artifacts manually removed by comparison with the original images. The “analyze particles” command was used to collect the number and area of the processed colonies using default parameters of unrestricted particle size and circularity.

Statistical analysis of the colony count data were modeled using Poisson regression using the MCMCglmm package (version 2.16; ref. 49), of the R statistical environment (version 2.15.1) using “Genotype” and a “Genotype/Treatment” interaction as fixed predictors. No intercept was included to force explicit measurements for each “Genotype”. MCMCglmm uses fully Bayesian modeling and parameter estimates generated using Gibbs sampling Markov chain Monte Carlo with 100,000 iterations, a burn-in of 3,000, and a thin of 10. Diagnostics revealed the lack of autocorrelation and excellent chain mixing. The default prior was used for fixed effects, which is a multivariate normal distribution with a 0 mean vector and diagonal variance matrix with variances of 10 to 10 variables and 10 covariances of 0, as this ensures fixed effects are independent and estimated almost entirely from the data. Overdispersion and replicates were accounted for in the residual variance structure with an improper inverse-Wishart prior with ν = 0 and V = 1, which implicitly assumes each well is a random effect. Parameters and parameter contrasts were considered to be statistically significant when the 95% highest posterior density interval did not contain 0. The conclusions were robust to changes in the minimal colony size from 1 to 10 (the global median colony size).

Xenograft Studies
Exponentially growing, retrovirally transduced NIH3T3 cells were trypsinized, resuspended in serum-free medium, and 0.5 x 10^5 cells mixed with 1.2 ratio (v/v) with growth factor–reduced Matrigel. For MCF7 cells, the 5 to 10 x 10^6 cells were similarly prepared and mixed with 1.2 ratio (v/v) with growth factor–reduced Matrigel. Cell suspensions in 0.1 mL were injected subcutaneously into 8-week-old female nude mice (Jackson Laboratory). Tumor volume was calculated as \(\pi/6 \times (\text{width})^2 \times \text{length} \) using digital calipers. These experiments were conducted under Institutional guidelines and with Institutional Animal Care and Use Committee approval in accordance with the Washington University Animal Studies Committee.

Statistical analysis of xenograft studies was conducted using linear mixed effects model to model the tumor growth curves. The logarithm of tumor volumes increased approximately linearly with time over the measurement period. This relationship had variable intercepts and constant slopes within injection replicates for each HER2 genotype. Therefore, the linear mixed effects model used random intercepts for injection replicates and fixed effects for time and a time-by-genotype interaction. This was specified as \(\text{Joiner} \times \text{log(Volume)} \) = Days + Days\times\text{Genotype} + (1|Injection)) using the lme4 package (50) in the R statistical environment version 2.13.2. Two-tailed \(p \) values of the time-by-genotype interaction for HER2 mutants compared with HER2 WT were generated using 100,000 Markov Chain Monte Carlo simulations as implemented in lme4 (50). The conclusions were robust to several alternative model specifications, and all modeling assumptions were confirmed to be reasonable on diagnostic residual plots. \(p \) values < 0.05 were considered to be statistically significant.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors’ Contributions
Conception and design: R. Bose, S.M. Kavuri, C.X. Ma, L. Ding, M.J. Ellis Development of methodology: S.M. Kavuri, S. Li, L. Ding, M.J. Ellis Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S.M. Kavuri, A.C. Searleman, W. Shen, D.C. Koboldt, J. Monsey, N. Goel, A.B. Aronson, S. Li, M.J. Ellis Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): R. Bose, S.M. Kavuri, A.C. Searleman, W. Shen, D. Shen, D.C. Koboldt, N. Goel, A.B. Aronson, E.R. Mardis, M.J. Ellis Writing, review, and/or revision of the manuscript: R. Bose, S.M. Kavuri, A.C. Searleman, S. Li, C.X. Ma, L. Ding, E.R. Mardis, M.J. Ellis Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): S. Li, C.X. Ma, M.J. Ellis Study supervision: M.J. Ellis

Acknowledgments
The authors thank The Cancer Genome Atlas Network for data access, Martin Leverkus for providing the pCFGS retroviral expression vector, Linda Pike and Timothy Collier for several helpful discussions, and Tom Kitchens and Maureen Highkin for technical assistance. The authors also thank Charles Perou, Paul Goodfellow, Martin Leverkus, Linda Pike, and Timothy Ley for critical reading of this manuscript.

Grant Support
Financial support for this work was provided by NIH grants R01CA095614 and U10HG00651701 (to M.J. Ellis), and U54HG003079 (to E.R. Mardis and R.K. Wilson at the Washington University Genome Institute), the Edward Mallinckrodt, Jr. Foundation and the ‘Ohana Breast Cancer Research Fund (to R. Bose), and the Foundation for Barnes-Jewish Hospital/Siteman Cancer Center Cancer Frontier Fund (to C.X. Ma, R. Bose, and M.J. Ellis).

Received July 20, 2012; revised November 20, 2012; accepted November 20, 2012; published OnlineFirst December 7, 2012.

REFERENCES
Activating HER2 Mutations in Breast Cancer

Activating HER2 Mutations in HER2 Gene Amplification Negative Breast Cancer

Updated version
Access the most recent version of this article at:
doi:10.1158/2159-8290.CD-12-0349

Supplementary Material
Access the most recent supplemental material at:
http://cancerdiscovery.aacrjournals.org/content/suppl/2012/12/10/2159-8290.CD-12-0349.DC1

Cited articles
This article cites 49 articles, 18 of which you can access for free at:
http://cancerdiscovery.aacrjournals.org/content/3/2/224.full#ref-list-1

Citing articles
This article has been cited by 62 HighWire-hosted articles. Access the articles at:
http://cancerdiscovery.aacrjournals.org/content/3/2/224.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.