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Figure 6. (Continued) The scatter plots show the absolute and differential expressions of  PLK1  and  PLK2  for each cell line (left). The fl ow cytometric 
profi les of doxycycline-induced cells expressing  KRAS  shRNA with RFP expression (red) versus uninduced cells (gray) are displayed (middle).The growth 
curves show the individual and combined effects of  KRAS  shRNA and the PLK inhibitor BI-6727, using WST-1 assay measured at 440 nm absorbance 
(right). Values represent mean ± SD. ****,  P  < 0.0001.   

upon their combined knockdown ( Fig.  3 ), highlighting the 
potential of combining 2 or more outlier kinase targets in 
treating cancer, even in cases with a predominant driver such as 
 ERBB2 . Interestingly, we also observed that the  ERBB2 -positive 
MDA-MB-453 cells grown resistant to trastuzumab treatment 
continued to remain dependent on  FGFR4  and responded to 
FGFR inhibitors ( Fig.  4 ). In clinical trials with  ERBB2 -posi-
tive metastatic breast cancer, 50% to 74% patients have been 
reported as not responsive to trastuzumab monotherapy or in 
combination with chemotherapy ( 33, 34 ). Our results suggest 
that the  ERBB2 -positive breast cancers may be partly depend-
ent on additional drivers, such as FGFR4, RET, EGFR, and 
MET, which may sustain these cancers following therapeutic 
abrogation of ERBB2 activity. Another important corollary 
to our observations is that combinatorial targeting of ERBB2 
and additional outlier kinases at the outset may be much more 
effective than approaching a single target at a time, a concept 
that warrants further study. Furthermore, each cancer sample 
needs to be investigated individually to rationally determine 
patient-specifi c unique target combinations. 

 Next, we extended the approach of nominating sample-
specifi c outlier kinases to pancreatic cancer, which is character-

ized by a bleak prognosis due to presentation at an advanced 
stage and resistance to traditional chemotherapy and radiation 
in the setting of its pancreatic cancer sanctuary, encompassing 
tumor stroma, extracellular matrix, tumor-infi ltrating immune 
cells, and cancer stem cells. Given the paucity of effective targets 
in pancreatic cancer, the strong response of pancreatic cancer 
cell lines to knockdown or inhibition of  a priori  designated out-
lier kinases is a promising lead. Our results also underscore the 
importance of matching sample-specifi c actionable targets with 
the appropriate therapeutics. For example, targeting MET was 
found to be more effective in pancreatic cancer cell lines with 
 MET  outlier expression than in nonoutlier samples. Notably, 
many of our experimental results are consistent with several 
anecdotal studies using kinase inhibitors against EGFR, MET, 
and AKT2 (35–39). 

 We also examined the effect of targeting sample-specifi c 
outlier kinases in conjunction with the oncogenic  KRAS  
mutation that is present in virtually all cases of pancre-
atic cancer. Consistent with previous reports ( 40–42 ), we 
observed that only a subset of  KRAS- mutant cells display 
 KRAS  dependency. Using tetracycline (tet)–sh KRAS  stable cell 
lines, we determined L3.3, MIA-PaCa-2, and Panc-03.27 cells 
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 Figure 7.      XL184 treatment suppresses tumor growth in BxPC-3 and PANC-1 pancreatic cancer xenografts. A, The growth curves show the effect of 
the MET inhibitor XL184 on tumor growth in BxPC-3 and PANC-1 xenografts. B, BxPC-3 and PANC-1 xenograft tumors after 3 weeks of XL184 treatment 
are shown, as compared with the controls. The bar graphs display tumor weight (C) and total body weight (D) after 3 weeks of XL184 treatment. Values 
represent mean ± SE. **,  P  < 0.01; ***,  P  < 0.001; ****,  P  < 0.0001. E, immunoblot results showing the effect of XL184 treatment on phospho-MET (pMET) in 
BxPC-3 and PANC-1 cells. F, immunoblot results showing the effect of XL184 treatment on phospho-AKT (pAKT) level in the PANC-1 orthotopic xenograft.   
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to be  KRAS  dependent, whereas BxPC-3 cells (the only pancre-
atic cancer cell line in our panel with wild-type  KRAS ) as well 
as PANC-1 and HPAC were  KRAS  independent. Interestingly, 
comparing our results with the published literature, we noted 
a general lack of consensus in the “ KRAS  dependence” status 
of pancreatic cancer cell lines ( 10 ,  14 ,  40–45 ). For example, 
whereas 2 prior studies using siRNA-mediated knockdown of 
 KRAS  in the  KRAS -mutant cell line MIA-PaCa-2 designated it 
as  KRAS  dependent, based on reduced cellular proliferation, 
invasion, and colony formation assays ( 10 ,  44 ), more recently, 
Collisson and colleagues ( 40 ) observed no signifi cant effect 
on proliferation in MIA-PaCa-2 cells transduced with sh KRAS  

lentivirus. Similarly, PANC-1 was identifi ed as  KRAS  depend-
ent in 4 different studies by both siRNA- and shRNA-mediated 
knockdowns, as assessed by cellular proliferation, colony 
formation, invasion, and xenograft tumor growth ( 10 ,  14 ,  43, 
44 ), whereas 3 studies found PANC-1 to be  KRAS  independ-
ent by shRNA-mediated knockdown and farnesyl transferase 
inhibitor treatment using similar  in vitro  assays ( 40–42 ). Con-
versely, the  KRAS  wild-type cell line BxPC-3 has been con-
sistently reported to be  KRAS  independent ( 14 ,  44 ), similar 
to our fi ndings. Interestingly, HPAC was described as  KRAS  
dependent by Collisson and colleagues ( 40 ) but was found to 
be  KRAS  independent in our assays. No published references 
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were found for L3.3 and Panc-03.27, which we report as  KRAS  
dependent. 

 Several  KRAS  synthetic lethal screens and DNA microarray 
analyses have been used to describe genes and gene signatures 
associated with  KRAS  dependence ( 12–14 ,  40, 41 ,  46 ) and 
include kinase genes such as  PLK1 ,  MST1R , and  SYK  ( 12 ,  40 , 
 41 ). Interestingly, we observed outlier expression of  PLK  to 
be restricted to  KRAS -dependent cells, and these cells showed 
higher sensitivity to the pan-PLK inhibitor BI-6727 both alone 
and in combination with  KRAS  knockdown, as compared 
with  KRAS -independent cells. Previously , Luo and colleagues 
identifi ed  PLK1  as a  RAS  synthetic lethal interactor in a lung 
and a colorectal cancer cell line, although they did not test any 
pancreatic cancer cell lines (12). Our results additionally show 
that cells respond to the pan-PLK inhibitor BI-6727 only if they 
have outlier expression of either  PLK1  or  PLK2  ( Fig. 6A and B ). 
This fi nding highlights the importance of using therapeutic 
targets in a sample-specifi c manner. 

 Overall, our study provides a generalizable metric to defi ne 
and prioritize personalized target spectra specifi c to individual 
tumors. The recent report of a remarkably successful treatment 
of a patient with acute lymphoblastic leukemia with sunitinib 
targeting “wildly active” expression of  FLT3  kinase identifi ed 
by RNA-Seq when whole-genome sequencing failed to identify 
any actionable aberrations ( 47 ), provides an anecdotal yet pow-
erful illustration of the potential application of the systematic 
identifi cation of outlier kinases proposed in our study.   

 METHODS  

 Kinome Analysis 
 Transcriptome sequencing data from 482 cancer and benign sam-

ples from 25 different tissue types previously generated on Illumina 
GA and GAII platforms were mapped using Bowtie ( 48 ) against Uni-
versity of California Santa Cruz (Santa Cruz, CA) Genome Browser 
genes in the hg18 human genome assembly ( 49 ). Unique best-match 
hit sequences normalized for the number of RPKM ( 16 ) were used to 
generate a gene expression data matrix for the entire compendium 
( 24 ). The expression data for the complete list of kinase genes ( 50 ) 
were used to identify “outlier kinases” in individual samples based on 
their absolute expression within the sample and differential expression 
(defi ned as absolute expression divided by median expression level of 
that gene across the compendium). GraphPad Prism software was used 
to generate kinome expression profi les for each sample, plotting abso-
lute expression versus differential expression for all kinases. 

 Statistical signifi cance of outlier expression was quantifi ed using a 
Mahalanobis distance metric [ D  2  = ( x  −  μ )′Σ −1 ( x  −  μ ); Σ = covariance 
matrix,  D  = Mahalanobis distance of the point  x  to the mean  μ ; refs. 
 51, 52 ), to measure the “distance” of each kinase’s absolute and dif-
ferential expression from the center of the scatter plot distribution.  P  
values were calculated assuming a χ 2  distribution, with 2 degrees of 
freedom. Kinases with absolute expression of more than 20 RPKM, 
differential expression of more than 5-fold, and  P  < 0.05 were nomi-
nated as having “outlier expression.” R language ( 53 ) was used to 
conduct statistical analysis.   

 Cell Culture 
 All human breast and pancreatic cancer and benign epithelial cell lines 

were purchased from the American Type Culture Collection (ATCC), 
except the benign immortalized pancreatic epithelial cell line HPDE 
and the xenograft cell lines derived from primary pancreatic adenocar-
cinoma tissues, which were provided by D.M. Simeone  (University of 

Michigan, Ann Arbor, MI). The pancreatic adenocarcinoma cell line L3.3 
was obtained from the University of Texas MD Anderson Character-
ized Cell Line Core (Houston, TX). All cell lines were grown in recom-
mended culture media and maintained at 37°C in 5% CO 2 . To ensure 
cellular identities, a panel of cell lines was genotyped at the University of 
Michigan Sequencing Core using Profi ler Plus (Applied Biosystems) and 
compared with the short tandem repeat (STR) profi les of respective cell 
lines available in the STR Profi le Database (ATCC).   

 Transcript Knockdowns and Cell Proliferation Assays 
 ON-TARGETplus siRNA against  AKT2 ,  AXL ,  EGFR ,  MET , and  PLK2 , 

and nontargeting control (siNTC) from Dharmacon (Supplementary 
Table S5A) were used at 100 nmol/L. Cells were transfected in 6-well 
plates at a density of 50,000 cells per well using Oligofectamine (Inv-
itrogen), according to the manufacturer’s protocol. Transfection was 
repeated 24 hours later; the cells were grown for an additional 48 hours 
and replated at a density of 5,000 cells per well in 24-well plates. Cells 
were counted over a period of 1 to 6 days using a Beckman Coulter cell 
counter. Transient transductions with shRNA against  ERBB2 ,  RPS6KB1 , 
and  FGFR4 , or nontargeting control (shNTC), were carried out in 6-well 
plates in the presence of 8 μg/mL hexadimethrine bromide (Polybrene; 
Sigma). For trastuzumab (Herceptin; Roche) experiments, cells were 
grown for 3 days in 24-well plates with and without trastuzumab 
(100 μg/mL), in combination with the FGFR inhibitor PD173074 (TOC-
RIS Bioscience) at 1 μmol/L or TKI-258 (dovitinib; Selleck Chemicals) at 
0.1 μmol/L. Trastuzumab-resistant cell lines were generated from MDA-
MB-453 and BT-474 by maintaining the cells in the continuous presence 
of 100 μg/mL trastuzumab over 1 month. Cell proliferation assays were 
carried out over a period of 1 to 7 days, using a Beckman Coulter cell 
counter, and growth curves were plotted using GraphPad Prism soft-
ware. Statistical comparisons were conducted using one-way ANOVA.   

 Generation of Stable Cell Lines with Doxycycline-Inducible 
KRAS-shRNA Lentiviral Constructs 

 Doxycycline-inducible shRNAmir-TRIPZ lentiviral constructs tar-
geting  KRAS  or nontargeting control (Open Biosystems) tagged with 
RFP were used to transduce a panel of pancreatic cell lines in the pres-
ence of 8 μg/mL Polybrene (Supplementary Table S5A). Forty-eight 
hours after transduction, cells were selected in medium containing 1 
μg/mL puromycin (Invitrogen) for 4 days. The shRNA expression was 
induced by growing cells in medium containing 1 μg/mL doxycycline 
(Sigma) for 72 hours. The enrichment of stable cells and effi ciency of 
shRNA induction were assessed by measuring the percentage of cells 
displaying red fl uorescence by fl ow cytometry (FACSAria Cell Sorter; 
BD Biosciences). Experiments with stable cell lines were carried out in 
the presence of 1 μg/mL doxycycline, refreshed daily. Experiments with 
the PLK inhibitor BI-6727 (volasertib; Selleck Chemicals) were carried 
out with cells plated in 96-well culture plates at a density of 3,000 to 
4,000 cells per well and treated with 10 nmol/L BI-6727 or dimethyl 
sulfoxide (DMSO). This concentration was selected on the basis of IC 50  
values calculated from prior proliferation assays using 1 to 500 nmol/L 
BI-6727 (data not shown). At 0, 1, 3, and 5 days following drug treat-
ment, viable cells were quantifi ed using WST-1 reagent (Roche) and 
absorbance was measured at 440 nm, per the manufacturer’s protocol. 
Growth curves were plotted using GraphPad Prism software. Statisti-
cal comparisons were conducted using one-way ANOVA.   

 Western Blot Analysis 
 Cell or tissue lysates were separated on 4% to 12% SDS polyacry-

lamide gels (Novex) and blotted on polyvinylidene difl uoride mem-
branes (Amersham) by semi-dry transfer. Antibodies to FGFR4 (Santa 
Cruz), phospho-AKT, total AKT, phospho-ERK, total ERK, phospho-
MET, and total MET (Cell Signaling Technology) were used at 1:1,000 
dilutions for standard immunoblotting and detection by enhanced 
chemiluminescence (ECL Prime), per the manufacturer’s protocol. 
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For  phospho-MET blots, cells treated with 10 μmol/L XL184 for 
12 hours were stimulated with 100 ng/mL human recombinant 
hepatocyte growth factor (Invitrogen) for 1 hour before harvesting in 
radioimmunoprecipitation assay RIPA buffer.   

 Quantitative RT-PCR Assay 
 RNA was isolated from cell lysates by the RNeasy Micro Kit 

(Qiagen), and cDNA was synthesized from 1 μg RNA using Super-
Script III (Invitrogen) and Random Primers (Invitrogen), per the 
manufacturer’s protocol. qRT-PCR was carried out on the StepOne 
Real-Time PCR system (Applied Biosystems) using gene-specifi c 
primers designed with Primer-BLAST (Supplementary Table S5B 
and S5C) and synthesized by IDT Technologies. Validation of RNA-
Seq results was carried out using TaqMan Universal PCR Master 
Mix II with uracil- N -glycosylase (Applied Biosystems) and Universal 
ProbeLibrary System probes (Roche), following the manufacturer’s 
protocol. Validation of siRNA- and shRNA-mediated knockdown 
was carried out using Fast SYBR Green Master Mix (Invitrogen), per 
the manufacturer’s protocol. qRT-PCR data were analyzed using the 
relative quantifi cation method and plotted as average fold-change 
compared with the control.  Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH)  was used as an internal reference. For qRT-PCR validation 
studies, GraphPad Prism software was used to conduct linear regres-
sion and calculate  R 2   correlation coeffi cients.   

 Dose Response 
 Experiments with the FGFR inhibitors PD173074 and dovitinib 

and the MET inhibitor XL184 were carried out with cells seeded at 
a density of 3,000 to 4,000 cells per well, plated in 96-well culture 
plates, and treated with concentrations from 100 to 0.1 μmol/L. 
WST-1 assay (Roche) was conducted after 72 hours, and readings 
were recorded at 440 nm. GraphPad Prism software was used to gen-
erate nonlinear regression curves and calculate IC 50  values.   

 Apoptosis Assay 
 The apoptosis assay was carried out using ApoScreen Annexin 

V Apoptosis Kit (Southern Biotech), per the manufacturer’s pro-
tocol. Briefl y, cells treated for 48 hours with DMSO or increasing 
concentrations of BI-6727 were washed with cold PBS, suspended 
in cold 1× binding buffer, stained with Annexin V and propidium 
iodide, and subjected to fl ow cytometry by FACSAria Cell Sorter 
(BD  Biosciences). Results were analyzed and plotted using Summit 
6.0 Software (Beckman Coulter).   

 In Vivo Tumorigenicity Assay 
 Six-week-old male NOD/SCID mice (Taconic) were housed under 

pathogen-free conditions approved by the American Association for 
Accreditation of Laboratory Animal Care in accordance with current 
regulations and standards of the U.S. Department of Agriculture 
and Department of Health and Human Services. Animal experi-
ments were approved by the University of Michigan Animal Care 
and Use Committee and carried out in accordance with established 
guidelines. Mice anesthetized with an intraperitoneal injection of 
xylazine (9 mg/kg) and ketamine (100 mg/kg body weight) were 
implanted with 1 × 10 6  BxPC-3 or PANC-1 cells suspended in 50 μL 
1:1 mixture of Media 199 and Matrigel (BD Biosciences) injected sub-
cutaneously into their fl anks using a 30-gauge needle. When tumor 
size reached 0.4 mm, mice were randomized into control and treat-
ment groups ( n  = 8 per group). The MET inhibitor XL184 (Exelixis 
Chemicals) was orally administered at 30 mg/kg body weight twice 
per week for 3 weeks. Tumor growth was monitored weekly. Tumor 
caliper measurements were converted into tumor volumes using the 
formula ½[length × (width) 2 ] mm 3  and plotted using GraphPad 
Prism software. At 3 weeks of treatment, mice were weighed and 

euthanized and the tumors harvested. Statistical comparisons were 
conducted using one-way ANOVA.    
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