In Focus

A Tale of Metabolites: The Cross-Talk between Chromatin and Energy Metabolism 497
B. Martinez-Pastor, C. Cosentino, and R. Mostoslavsky

REVIEW

Molecular Dissection of Microsatellite Instable Colorectal Cancer 502
E. Vilar and J. Tabernero

RESEARCH BRIEF

Histone H3.3 Mutations Drive Pediatric Glioblastoma through Upregulation of MYCN 512

Précis: Histone variant H3.3 glycine-34 mutations induce differential genome-wide histone H3 lysine 36 trimethylation and lead to upregulation of MYCN in the developing forebrain.
See commentary, p. 484

RESEARCH ARTICLES

Relief of Feedback Inhibition of HER3 Transcription by RAF and MEK Inhibitors Attenuates Their Antitumor Effects in BRAF-Mutant Thyroid Carcinomas 520

Précis: Lineage-specific HER3 upregulation and ligand-dependent HER2/HER3 activation confer resistance to MAPK pathway inhibitors in BRAF-mutant thyroid cancer cells.
See commentary, p. 487

IN THIS ISSUE

Highlighted research articles 471

NEWS IN BRIEF

Important news stories affecting the community 474

NEWS IN DEPTH

Q&A: Powel Brown on Cancer Prevention Research 477

Two Drugs Deemed Breakthrough Therapies 478

RESEARCH WATCH

Selected highlights of recent articles of exceptional significance from the cancer literature 479

ONLINE

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

VIEWS

In The Spotlight

G34, Another Connection between MYCN and a Pediatric Tumor 484
M. Huang and W.A. Weiss
See article, p. 512

Déjà Vu: EGF Receptors Drive Resistance to BRAF Inhibitors 487
M.R. Girotti and R. Marais
See article, p. 520

Two Is Better Than One: Combining IGF1R and MEK Blockade as a Promising Novel Treatment Strategy Against KRAS-Mutant Lung Cancer 491
R. Chen and E.A. Sweet-Cordero
See article, p. 548

Discovering What Makes STAT Signaling TYK in T-ALL 494
L. Fontan and A. Melnick
See article, p. 564
De-Repression of PDGFRβ Transcription Promotes Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Glioblastoma Patients. 534
Précis: Transcriptional derepression of PDGFRβ in response to EGFR inhibition renders EGFR-mutant glioblastomas dependent on PDGFRβ for survival.

Coordinate Direct Input of Both KRAS and IGF1 Receptor to Activation of PI3 Kinase in KRAS-Mutant Lung Cancer 548
M. Molina-Arcas, D.C. Hancock, C. Sheridan, M.S. Kumar, and J. Downward
Précis: KRAS-mutant NSCLC cells are selectively sensitive to inhibition of IGF1R, which is required for KRAS-mediated activation of PI3K signaling.
See commentary, p. 491

TYK2–STAT1–BCL2 Pathway Dependence in T-cell Acute Lymphoblastic Leukemia 564
Précis: Activation of tyrosine kinase 2 (TYK2) by mutation or autocrine interleukin-10 signaling promotes T-ALL cell survival through activation of STAT1 and upregulation of BCL2.
See commentary, p. 494

Bone Marrow–Derived Gr1+ Cells Can Generate a Metastasis-Resistant Microenvironment Via Induced Secretion of Thrombospondin-1 578
Précis: Metastasis-incompetent tumors systemically reprogram bone marrow–derived myeloid cells in the premetastatic niche to produce TSP-1 to suppress metastatic outgrowth.

Montero-Conde and colleagues show that BRAF-mutant thyroid cancer cells are resistant to RAF and MAP/ERK (MEK) inhibitors. Reactivation of RAS signaling in these cells was associated with de-repression of HER3 transcription due to decreased binding of C-terminal binding protein 1 and 2 (CTBP1/CTBP2) to the HER3 promoter. RAF/MEK inhibition also triggered increased HER3 phosphorylation and activation of HER2/HER3 heterodimers specifically in BRAF-mutant thyroid cancer cells. This effect was dependent on autocrine production of the HER3 ligand neuregulin 1 in thyroid cancer cells, identifying a lineage-specific mechanism of MAPK inhibitor resistance. Treatment with lapatinib sensitized thyroid cancer cells to RAF/MEK blockade and inhibited the growth of murine thyroid tumors, suggesting that this combination may overcome resistance in patients with thyroid cancer. For details, please see the article by Montero-Conde and colleagues on page 520.

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:

• Old Drug Learns New Tricks for Lymphoma
• Startup Bets on Cancer Immunotherapy
• Devil Is in Details for Data Transparency
• PI3K Inhibitor Shows Promise in Early Trial
• Teaming Up for a Companion Diagnostic
• AKT Inhibitors Take Steps Forward

ON THE COVER
Montero-Conde and colleagues show that BRAF-mutant thyroid cancer cells are resistant to RAF and MAP/ERK (MEK) inhibitors. Reactivation of RAS signaling in these cells was associated with de-repression of HER3 transcription due to decreased binding of C-terminal binding protein 1 and 2 (CTBP1/CTBP2) to the HER3 promoter. RAF/MEK inhibition also triggered increased HER3 phosphorylation and activation of HER2/HER3 heterodimers specifically in BRAF-mutant thyroid cancer cells. This effect was dependent on autocrine production of the HER3 ligand neuregulin 1 in thyroid cancer cells, identifying a lineage-specific mechanism of MAPK inhibitor resistance. Treatment with lapatinib sensitized thyroid cancer cells to RAF/MEK blockade and inhibited the growth of murine thyroid tumors, suggesting that this combination may overcome resistance in patients with thyroid cancer. For details, please see the article by Montero-Conde and colleagues on page 520.