IN THIS ISSUE
Highlighted research articles

NEWS IN BRIEF
Important news stories affecting the community

NEWS IN DEPTH
Q&A: Mitchell Zeller on the FDA and Tobacco

RESEARCH BRIEFS
mTOR Inhibition Specifically Sensitizes Colorectal Cancers with KRAS or BRAF Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org

VIEWS
In The Spotlight

Climbing RAS, the Everest of Oncogenes
M. Russo, F. Di Nicolantonio, and A. Bardelli
See article, p. 42

miR-30c-2-3p and miR-30a-3p: New Pieces of the Jigsaw Puzzle in HIF2α Regulation
H. Moch and M. Lukamowicz-Rajská
See article, p. 53

Faulty ECM Signaling Facilitates Autoimmune Lymphomagenesis
R.A. Brekken
See article, p. 110

FORUM
In Focus

Towards a Unified Model of RAF Inhibitor Resistance
D.B. Solit and N. Rosen
See articles, p. 61, p. 69, p. 80, p. 94

REVIEW
Antiangiogenic Therapies: Going beyond Their Limits
L. Moserle, G. Jiménez-Valerio, and O. Casanovas

RESEARCH BRIEFS
mTOR Inhibition Specifically Sensitizes Colorectal Cancers with KRAS or BRAF Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1

Précis: mTORC inhibitors decrease MCL-1 translation and cooperate with BCL-2/BCL-XL inhibitors to induce apoptosis and growth arrest in KRAS- and BRAF-mutant colorectal cancer.

See commentary, p. 19

NEWS IN BRIEF
Restricted Expression of miR-30c-2-3p and miR-30a-3p in Clear Cell Renal Cell Carcinomas Enhances HIF2α Activity

Précis: Repression of specific miRNAs antagonizes the tumor-suppressive activity of HIF1α in ccRCC tumors by augmenting expression of the oncoprotein HIF2α.

See commentary, p. 22

NEWS IN DEPTH
Faulty ECM Signaling Facilitates Autoimmune Lymphomagenesis
R.A. Brekken

See article, p. 110

FORUM
MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition

Précis: Whole-exome and transcriptome sequencing of dabrafenib- and trametinib-resistant melanomas identifies putative mechanisms of acquired resistance to combined RAF/MEK inhibition.

See commentary, p. 27
Using data from a high-throughput drug screen, Faber and colleagues found that AZD8055, an inhibitor of mTOR complexes 1 and 2 (TORC1/2), cooperated with the BCL-2/BCL-XL inhibitor ABT-263 to induce cell-cycle arrest and apoptosis specifically in KRAS- and BRAF-mutant colorectal cancer cell lines. This genotype selectivity was mediated by suppression of the antiapoptotic protein MCL-1 and disruption of BIM–MCL-1 complexes in response to TORC1/2 inhibition, which sensitized KRAS-mutant cells to ABT-263 and triggered apoptosis. Furthermore, dual treatment with ABT-263 and AZD8055 preferentially induced tumor regression in KRAS-mutant colorectal cancer xenograft and genetically engineered mouse models. These results support further clinical development of this therapeutic combination for patients with KRAS- and BRAF-mutant colorectal cancer. For details, please see the article by Faber and colleagues on page 42.
Updated version
Access the most recent version of this article at:
http://cancerdiscovery.aacrjournals.org/content/4/1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.