Contents

January 2014
Volume 4
Number 1

In This Issue
Highlighted research articles

News in Brief
Important news stories affecting the community

News in Depth
Q&A: Mitchell Zeller on the FDA and Tobacco
The Science of Tobacco Addiction and Cessation

Research Watch
Selected highlights of recent articles of exceptional significance from the cancer literature

Online
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

Views
In The Spotlight
Climbing RAS, the Everest of Oncogenes
M. Russo, F. Di Nicolantonio, and A. Bardelli
See article, p. 42

miR-30c-2-3p and miR-30a-3p: New Pieces of the Jigsaw Puzzle in HIF2α Regulation
H. Moch and M. Lukamowicz-Rajska
See article, p. 53

Faulty ECM Signaling Facilitates Autoimmune Lymphomagenesis
R.A. Brekken
See article, p. 110

In Focus
Towards a Unified Model of RAF Inhibitor Resistance
D.B. Solit and N. Rosen
See articles, p. 61, p. 69, p. 80, p. 94

Review
Antiangiogenic Therapies: Going beyond Their Limits
L. Moserle, G. Jiménez-Valerio, and O. Casanovas

Research Briefs
mTOR Inhibition Specifically Sensitizes Colorectal Cancers with KRAS or BRAF Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1

Restricted Expression of miR-30c-2-3p and miR-30a-3p in Clear Cell Renal Cell Carcinomas Enhances HIF2α Activity

Faulty ECM Signaling Facilitates Autoimmune Lymphomagenesis
R.A. Brekken
See article, p. 110

In Focus
Towards a Unified Model of RAF Inhibitor Resistance
D.B. Solit and N. Rosen
See articles, p. 61, p. 69, p. 80, p. 94

MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition

In Focus
Towards a Unified Model of RAF Inhibitor Resistance
D.B. Solit and N. Rosen
See articles, p. 61, p. 69, p. 80, p. 94

See commentary, p. 19

See commentary, p. 22

See commentary, p. 27
Using data from a high-throughput drug screen, Faber and colleagues found that AZD8055, an inhibitor of mTOR complexes 1 and 2 (TORC1/2), cooperated with the BCL-2/BCL-XL inhibitor ABT-263 to induce cell-cycle arrest and apoptosis specifically in \textit{KRAS}- and \textit{BRAF}-mutant colorectal cancer cell lines. This genotype selectivity was mediated by suppression of the antiapoptotic protein MCL-1 and disruption of BIM–MCL-1 complexes in response to TORC1/2 inhibition, which sensitized \textit{KRAS}-mutant cells to ABT-263 and triggered apoptosis. Furthermore, dual treatment with ABT-263 and AZD8055 preferentially induced tumor regression in \textit{KRAS}-mutant colorectal cancer xenograft and genetically engineered mouse models. These results support further clinical development of this therapeutic combination for patients with \textit{KRAS}- and \textit{BRAF}-mutant colorectal cancer. For details, please see the article by Faber and colleagues on page 42.

\textit{See commentary, p. 27}

\section*{Research Articles}

\subsection*{A Novel AKT1 Mutant Amplifies an Adaptive Melanoma Response to BRAF Inhibition}

\textit{See commentary, p. 27}

\subsection*{The Genetic Landscape of Clinical Resistance to RAF Inhibition in Metastatic Melanoma}

\textbf{Précis:} Whole-exome sequencing identifies diverse mechanisms of resistance to vemurafenib or dabrafenib, many of which result in MAPK pathway reactivation.

\textit{See commentary, p. 27}

\subsection*{Defective Stromal Remodeling and Neutrophil Extracellular Traps in Lymphoid Tissues Favor the Transition from Autoimmunity to Lymphoma}

\textbf{Précis:} Loss of the matricellular protein SPARC leads to altered stromal remodeling and abnormal neutrophil activity that exacerbate autoimmunity and promote B-cell transformation.

\textit{See commentary, p. 27}