CONTENTS

JANUARY 2014

NEWS IN BRIEF

- Important news stories affecting the community 6
- Q&A: Mitchell Zeller on the FDA and Tobacco 10
- The Science of Tobacco Addiction and Cessation 12

NEWS IN DEPTH

- Selected highlights of recent articles of exceptional significance from the cancer literature 14

ONLINE

- For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

IN THIS ISSUE

- Highlighted research articles .. 1

REVIEW

- Antiangiogenic Therapies: Going beyond Their Limits 31
 L. Moserle, G. Jiménez-Valerio, and O. Casanovas

RESEARCH BRIEFS

- mTOR Inhibition Specifically Sensitizes Colorectal Cancers with KRAS or BRAF Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1 42
- Restricted Expression of miR-30c-2-3p and miR-30a-3p in Clear Cell Renal Cell Carcinomas Enhances HIF2α Activity 53
- MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition 61

VIEWS

- In The Spotlight
 - Climbing RAS, the Everest of Oncogenes 19
 M. Russo, F. Di Nicolantonio, and A. Bardelli
 See article, p. 42
 - miR-30c-2-3p and miR-30a-3p: New Pieces of the Jigsaw Puzzle in HIF2α Regulation 22
 H. Moch and M. Lukamowicz-Rajska
 See article, p. 53
 - Faulty ECM Signaling Facilitates Autoimmune Lymphomagenesis25
 R.A. Brekken
 See article, p. 110

- In Focus
 - Towards a Unified Model of RAF Inhibitor Resistance 27
 D.B. Solit and N. Rosen
 See articles, p. 61, p. 69, p. 80, p. 94

In Focus

Towards a Unified Model of RAF Inhibitor Resistance 27
D.B. Solit and N. Rosen
See articles, p. 61, p. 69, p. 80, p. 94
Using data from a high-throughput drug screen, Faber and colleagues found that AZD8055, an inhibitor of mTOR complexes 1 and 2 (TORC1/2), cooperated with the BCL-2/BCL-XL inhibitor ABT-263 to induce cell-cycle arrest and apoptosis specifically in \textit{KRAS}- and \textit{BRAF}-mutant colorectal cancer cell lines. This genotype selectivity was mediated by suppression of the antiapoptotic protein MCL-1 and disruption of BIM–MCL-1 complexes in response to TORC1/2 inhibition, which sensitized \textit{KRAS}-mutant cells to ABT-263 and triggered apoptosis. Furthermore, dual treatment with ABT-263 and AZD8055 preferentially induced tumor regression in \textit{KRAS}-mutant colorectal cancer xenograft and genetically engineered mouse models. These results support further clinical development of this therapeutic combination for patients with \textit{KRAS}- and \textit{BRAF}-mutant colorectal cancer. For details, please see the article by Faber and colleagues on page 42.

\textbf{AC icon indicates Author Choice}

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:

- NCI Issues Omics Checklist for Tests
- Obinutuzumab Breaks through to FDA Approval
- ICR Expands CanSAR Drug Discovery Platform
- ASCO Forges Ahead with CancerLinQ
- HPV Vaccine Works against Nine Viral Types
- Ibrutinib Approved for Mantle Cell Lymphoma

\textbf{ON THE COVER} Using data from a high-throughput drug screen, Faber and colleagues found that AZD8055, an inhibitor of mTOR complexes 1 and 2 (TORC1/2), cooperated with the BCL-2/BCL-XL inhibitor ABT-263 to induce cell-cycle arrest and apoptosis specifically in \textit{KRAS}- and \textit{BRAF}-mutant colorectal cancer cell lines. This genotype selectivity was mediated by suppression of the antiapoptotic protein MCL-1 and disruption of BIM–MCL-1 complexes in response to TORC1/2 inhibition, which sensitized \textit{KRAS}-mutant cells to ABT-263 and triggered apoptosis. Furthermore, dual treatment with ABT-263 and AZD8055 preferentially induced tumor regression in \textit{KRAS}-mutant colorectal cancer xenograft and genetically engineered mouse models. These results support further clinical development of this therapeutic combination for patients with \textit{KRAS}- and \textit{BRAF}-mutant colorectal cancer. For details, please see the article by Faber and colleagues on page 42.