IN THIS ISSUE
Highlighted research articles

NEWS IN BRIEF
Important news stories affecting the community

Q&A: Mitchell Zeller on the FDA and Tobacco
The Science of Tobacco Addiction and Cessation

NEWS IN DEPTH
Q&A: Mitchell Zeller on the FDA and Tobacco

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

IN THE SPOTLIGHT
Climbing RAS, the Everest of Oncogenes
miR-30c-2-3p and miR-30a-3p: New Pieces of the Jigsaw Puzzle in HIF2α Regulation
Faulty ECM Signaling Facilitates Autoimmune Lymphomagenesis

M. Russo, F. Di Nicolantonio, and A. Bardelli
H. Moch and M. Lukamowicz-Rajska
R.A. Brekken

IN FOCUS
Towards a Unified Model of RAF Inhibitor Resistance

D.B. Solit and N. Rosen

REVIEW
Antiangiogenic Therapies: Going beyond Their Limits
L. Moserle, G. Jiménez-Valerio, and O. Casanovas

RESEARCH BRIEFS
mTOR Inhibition Specifically Sensitizes Colorectal Cancers with KRAS or BRAF Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1

Restricted Expression of miR-30c-2-3p and miR-30a-3p in Clear Cell Renal Cell Carcinomas Enhances HIF2α Activity

Faulty ECM Signaling Facilitates Autoimmune Lymphomagenesis
R.A. Brekken

MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition

Précis: Whole-exome and transcriptome sequencing of dabrafenib- and trametinib-resistant melanomas identifies putative mechanisms of acquired resistance to combined RAF/MEK inhibition.

See commentary, p. 27
Using data from a high-throughput drug screen, Faber and colleagues found that AZD8055, an inhibitor of mTOR complexes 1 and 2 (TORC1/2), cooperated with the BCL-2/BCL-XL inhibitor ABT-263 to induce cell-cycle arrest and apoptosis specifically in KRAS- and BRAF-mutant colorectal cancer cell lines. This genotype selectivity was mediated by suppression of the antiapoptotic protein MCL-1 and disruption of BIM–MCL-1 complexes in response to TORC1/2 inhibition, which sensitized KRAS-mutant cells to ABT-263 and triggered apoptosis. Furthermore, dual treatment with ABT-263 and AZD8055 preferentially induced tumor regression in KRAS-mutant colorectal cancer xenograft and genetically engineered mouse models. These results support further clinical development of this therapeutic combination for patients with KRAS- and BRAF-mutant colorectal cancer. For details, please see the article by Faber and colleagues on page 42.

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:

- NCI Issues Omics Checklist for Tests
- Obinutuzumab Breaks through to FDA Approval
- ASCO Forges Ahead with CancerLinQ

AC icon indicates Author Choice
For more information please visit http://www.aacrjournals.org

A Novel AKT1 Mutant Amplifies an Adaptive Melanoma Response to BRAF Inhibition.......................69
See commentary, p. 27

Acquired Resistance and Clonal Evolution in Melanoma during BRAF Inhibitor Therapy80
Précis: Acquired BRAF inhibitor resistance is driven by heterogeneous genetic alterations that promote MAPK reactivation, PI3K–AKT upregulation, and branched clonal evolution.
See commentary, p. 27

The Genetic Landscape of Clinical Resistance to RAF Inhibition in Metastatic Melanoma94
Précis: Whole-exome sequencing identifies diverse mechanisms of resistance to vemurafenib or dabrafenib, many of which result in MAPK pathway reactivation.
See commentary, p. 27

Defective Stromal Remodeling and Neutrophil Extracellular Traps in Lymphoid Tissues Favor the Transition from Autoimmunity to Lymphoma 110
Précis: Loss of the matricellular protein SPARC leads to altered stromal remodeling and abnormal neutrophil activity that exacerbate autoimmunity and promote B-cell transformation.
See commentary, p. 25

Using data from a high-throughput drug screen, Faber and colleagues found that AZD8055, an inhibitor of mTOR complexes 1 and 2 (TORC1/2), cooperated with the BCL-2/BCL-XL inhibitor ABT-263 to induce cell-cycle arrest and apoptosis specifically in KRAS- and BRAF-mutant colorectal cancer cell lines. This genotype selectivity was mediated by suppression of the antiapoptotic protein MCL-1 and disruption of BIM–MCL-1 complexes in response to TORC1/2 inhibition, which sensitized KRAS-mutant cells to ABT-263 and triggered apoptosis. Furthermore, dual treatment with ABT-263 and AZD8055 preferentially induced tumor regression in KRAS-mutant colorectal cancer xenograft and genetically engineered mouse models. These results support further clinical development of this therapeutic combination for patients with KRAS- and BRAF-mutant colorectal cancer. For details, please see the article by Faber and colleagues on page 42.