Antiangiogenic Therapies: Going beyond Their Limits 31
L. Moserle, G. Jiménez-Valerio, and O. Casanovas

mTOR Inhibition Specifically Sensitizes Colorectal Cancers with KRAS or BRAF Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1 42
Précis: mTORC inhibitors decrease MCL-1 translation and cooperate with BCL-2/BCL-XL inhibitors to induce apoptosis and growth arrest in KRAS- and BRAF-mutant colorectal cancer.
See commentary, p. 19

Restricted Expression of miR-30c-2-3p and miR-30a-3p in Clear Cell Renal Cell Carcinomas Enhances HIF2α Activity 53
Précis: Repression of specific miRNAs antagonizes the tumor-suppressive activity of HIF1α in ccRCC tumors by augmenting expression of the oncoprotein HIF2α.
See commentary, p. 22

MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition 61
Précis: Whole-exome and transcriptome sequencing of dabrafenib- and trametinib-resistant melanomas identifies putative mechanisms of acquired resistance to combined RAF/MEK inhibition.
See commentary, p. 27

In Focus
Towards a Unified Model of RAF Inhibitor Resistance 27
D.B. Solit and N. Rosen
See articles, p. 61, p. 69, p. 80, p. 94

CANCER DISCOVERY CONTENTS
JANUARY 2014 • VOLUME 4 • NUMBER 1

IN THIS ISSUE
Highlighted research articles 1

NEWS IN BRIEF
Important news stories affecting the community 6

NEWS IN DEPTH
Q&A: Mitchell Zeller on the FDA and Tobacco 10
The Science of Tobacco Addiction and Cessation 12

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 14

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

REVIEW
Antiangiogenic Therapies: Going beyond Their Limits 31
L. Moserle, G. Jiménez-Valerio, and O. Casanovas

RESEARCH BRIEFS
mTOR Inhibition Specifically Sensitizes Colorectal Cancers with KRAS or BRAF Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1 42
Précis: mTORC inhibitors decrease MCL-1 translation and cooperate with BCL-2/BCL-XL inhibitors to induce apoptosis and growth arrest in KRAS- and BRAF-mutant colorectal cancer.
See commentary, p. 19

Restricted Expression of miR-30c-2-3p and miR-30a-3p in Clear Cell Renal Cell Carcinomas Enhances HIF2α Activity 53
Précis: Repression of specific miRNAs antagonizes the tumor-suppressive activity of HIF1α in ccRCC tumors by augmenting expression of the oncoprotein HIF2α.
See commentary, p. 22

MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients with Acquired Resistance to Combined RAF/MEK Inhibition 61
Précis: Whole-exome and transcriptome sequencing of dabrafenib- and trametinib-resistant melanomas identifies putative mechanisms of acquired resistance to combined RAF/MEK inhibition.
See commentary, p. 27
Using data from a high-throughput drug screen, Faber and colleagues found that AZD8055, an inhibitor of mTOR complexes 1 and 2 (TORC1/2), cooperated with the BCL-2/BCL-XL inhibitor ABT-263 to induce cell-cycle arrest and apoptosis specifically in \(\text{KRAS} \)- and \(\text{BRAF} \)-mutant colorectal cancer cell lines. This genotype selectivity was mediated by suppression of the antiapoptotic protein MCL-1 and disruption of BIM–MCL-1 complexes in response to TORC1/2 inhibition, which sensitized \(\text{KRAS} \)-mutant cells to ABT-263 and triggered apoptosis. Furthermore, dual treatment with ABT-263 and AZD8055 preferentially induced tumor regression in \(\text{KRAS} \)-mutant colorectal cancer xenograft and genetically engineered mouse models. These results support further clinical development of this therapeutic combination for patients with \(\text{KRAS} \)- and \(\text{BRAF} \)-mutant colorectal cancer.

For details, please see the article by Faber and colleagues on page 42.

Précis: BRAF inhibition induces an AKT-dependent early adaptive response that shapes selection of PI3K-AKT-amplifying late-resistance mutations and modulates sensitivity to AKT blockade.

See commentary, p. 27

AC icon indicates Author Choice

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:

- NCI Issues Omics Checklist for Tests
- Obinutuzumab Breaks through to FDA Approval
- ICR Expands CanSAR Drug Discovery Platform
- ASCO Forges Ahead with CancerLinQ
- HPV Vaccine Works against Nine Viral Types
- Ibrutinib Approved for Mantle Cell Lymphoma

AC icon indicates Author Choice

For more information please visit http://www.aacrjournals.org

ON THE COVER

Using data from a high-throughput drug screen, Faber and colleagues found that AZD8055, an inhibitor of mTOR complexes 1 and 2 (TORC1/2), cooperated with the BCL-2/BCL-XL inhibitor ABT-263 to induce cell-cycle arrest and apoptosis specifically in \(\text{KRAS} \)- and \(\text{BRAF} \)-mutant colorectal cancer cell lines. This genotype selectivity was mediated by suppression of the antiapoptotic protein MCL-1 and disruption of BIM–MCL-1 complexes in response to TORC1/2 inhibition, which sensitized \(\text{KRAS} \)-mutant cells to ABT-263 and triggered apoptosis. Furthermore, dual treatment with ABT-263 and AZD8055 preferentially induced tumor regression in \(\text{KRAS} \)-mutant colorectal cancer xenograft and genetically engineered mouse models. These results support further clinical development of this therapeutic combination for patients with \(\text{KRAS} \)- and \(\text{BRAF} \)-mutant colorectal cancer. For details, please see the article by Faber and colleagues on page 42.