IN THIS ISSUE

Highlighted research articles .. 1103

NEWS IN BRIEF

Important news stories affecting the community 1108

NEWS IN DEPTH

A New Era in CLL Treatment .. 1112

RESEARCH WATCH

Selected highlights of recent articles of exceptional significance from the cancer literature 1113

ONLINE

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

VIEWS

In The Spotlight

Testing the Metal of ERCC2 in Predicting the Response to Platinum-Based Therapy .. 1118

J.J. Turchi, D.S. Woods, and P. VanderVere-Carozza

See article, p. 1140

Understanding and Targeting Alkylator Resistance in Glioblastoma .. 1120

W. Wick and M. Platten

See article, p. 1198

A CREB1–TGFβ2 Self-Sustaining Loop in Glioblastoma 1123

D. Wotton

See article, p. 1230

REVIEW

Beyond DNA Repair: DNA-PK Function in Cancer 1126

J.F. Goodwin and K.E. Knudsen

RESEARCH ARTICLES

Somatic ERCC2 Mutations Correlate with Cisplatin Sensitivity in Muscle-Invasive Urothelial Carcinoma 1140

Précis: ERCC2 is somatically mutated in patients with urothelial carcinoma who exhibit complete response to cisplatin, and may be a predictive biomarker of clinical benefit from neoadjuvant chemotherapy.

See commentary, p. 1118

Discovery of Biomarkers Predictive of GSI Response in Triple-Negative Breast Cancer and Adenoid Cystic Carcinoma 1154

Précis: High levels of activated NOTCH1 and expression of the target gene HES4 are correlated with a robust response to NOTCH pathway inhibition with gamma-secretase inhibitors in NOTCH1-mutant tumors.

A Large-Scale RNAi-Based Mouse Tumorigenesis Screen Identifies New Lung Cancer Tumor Suppressors That Repress FGFR Signaling 1168

Précis: An shRNA-based functional screen identified transcriptionally silenced candidate tumor suppressor genes that are downregulated in human lung squamous cell carcinoma, many of which inhibit FGFR signaling.

See article, p. 1198
Development of siRNA Payloads to Target KRAS-Mutant Cancer

Précis: An RNAi library of potent siRNAs facilitates low-dose, combinatorial gene knockdown of KRAS and RAS pathway effectors and inhibits KRAS-mutant colorectal cancer growth.

ATM Regulates 3-Methylpurine-DNA Glycosylase and Promotes Therapeutic Resistance to Alkylating Agents

Précis: ATM can promote temozolomide resistance in pediatric glioblastoma by activating 3-methylpurine-DNA glycosylase (MPG)-mediated base excision repair.

See commentary, p. 1120

The Immune Microenvironment Confers Resistance to MAPK Pathway Inhibitors through Macrophage-Derived TNFα

Précis: TNFα expressed in tumor-associated macrophages promotes MAPK pathway inhibitor resistance in melanoma, which can be overcome by combined treatment with IκB kinase inhibitors.

Active CREB1 Promotes a Malignant TGFβ2 Autocrine Loop in Glioblastoma

L. Rodón, A. González-Juncà, M. del Mar Inda, A. Sala-Hojman, E. Martínez-Sáez, and J. Seoane

Précis: TGFβ activates CREB1- and SMAD3-dependent TFGβ2 transcription and hyperactivation of TGFβ signaling in human glioblastoma cell lines and tumors.

See commentary, p. 1123

ON THE COVER

Smith, Sanchez-Laorden, and colleagues found that macrophage-derived TNFα was required for BRAFV600E-positive melanoma cell survival and protected these cells from MEK inhibitor (MEKi)-induced cell death via NFκB-dependent upregulation of microphthalmia-associated transcription factor (MITF). MEK/BRAF inhibitor treatment increased tumor-associated macrophage recruitment and TNFα and MITF expression in BRAF-mutant melanomas. Intriguingly, dual treatment with IκB kinase inhibitors (IKKi) and MEKi suppressed both macrophage-derived TNFα expression and MITF expression in melanoma cells and resulted in enhanced inhibition of tumor growth in mice. These findings highlight the role of the immune microenvironment in MAPK inhibitor resistance and suggest that IKKi therapy may improve the efficacy of MAPK pathway inhibitors by preventing TNFα-mediated resistance. For details, please see the article by Smith, Sanchez-Laorden, and colleagues on page 1214.
CANCER DISCOVERY

4 (10)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/4/10</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>