Somatic ERCC2 Mutations Correlate with Cisplatin Sensitivity in Muscle-Invasive Urothelial Carcinoma 1140

Précis: ERCC2 is somatically mutated in patients with urothelial carcinoma who exhibit complete response to cisplatin, and may be a predictive biomarker of clinical benefit from neoadjuvant chemotherapy.

See commentary, p. 1118

Discovery of Biomarkers Predictive of GSI Response in Triple-Negative Breast Cancer and Adenoid Cystic Carcinoma 1154

Précis: High levels of activated NOTCH1 and expression of the target gene HES4 are correlated with a robust response to NOTCH pathway inhibition with gamma-secretase inhibitors in NOTCH1-mutant tumors.

A Large-Scale RNAi-Based Mouse Tumorigenesis Screen Identifies New Lung Cancer Tumor Suppressors That Repress FGFR Signaling 1168

Précis: An shRNA-based functional screen identified transcriptionally silenced candidate tumor suppressor genes that are downregulated in human lung squamous cell carcinoma, many of which inhibit FGFR signaling.
Development of siRNA Payloads to Target KRAS-Mutant Cancer 1182
Précis: An RNAi library of potent siRNAs facilitates low-dose, combinatorial gene knockdown of KRAS and RAS pathway effector nodes and inhibits KRAS-mutant colorectal cancer growth.

ATM Regulates 3-Methylpurine-DNA Glycosylase and Promotes Therapeutic Resistance to Alkylating Agents 1198
Précis: ATM can promote temozolomide resistance in pediatric glioblastoma by activating 3-methylpurine-DNA glycosylase (MPG)-mediated base excision repair.

See commentary, p. 1120

Active CREB1 Promotes a Malignant TGFB2 Autocrine Loop in Glioblastoma 1230
L. Rodón, A. González-Juncà, M. del Mar Insa, A. Sala-Hojman, E. Martinez-Sáez, and J. Seoane
Précis: TGFB activates CREB1- and SMAD3-dependent TGFB2 transcription and hyperactivation of TGFB signaling in human glioblastoma cell lines and tumors.

See commentary, p. 1123

Smith, Sanchez-Laorden, and colleagues found that macrophage-derived TNFα was required for BRAFV600E-positive melanoma cell survival and protected these cells from MEK inhibitor (MEKi)-induced cell death via NFκB-dependent upregulation of microphthalmia-associated transcription factor (MITF). MEK/BRAF inhibitor treatment increased tumor-associated macrophage recruitment and TNFα and MITF expression in BRAF-mutant melanomas. Intriguingly, dual treatment with IκB kinase inhibitors (IKKi) and MEKi suppressed both macrophage-derived TNFα expression and MITF expression in melanoma cells and resulted in enhanced inhibition of tumor growth in mice. These findings highlight the role of the immune microenvironment in MAPK inhibitor resistance and suggest that IKKi therapy may improve the efficacy of MAPK pathway inhibitors by preventing TNFα-mediated resistance. For details, please see the article by Smith, Sanchez-Laorden, and colleagues on page 1214.

Updated version
Access the most recent version of this article at:
http://cancerdiscovery.aacrjournals.org/content/4/10

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.