Gastric Cancer in Boston, MA. “So we determined reasonable markers for clustering these tumors.”

About 10% of the tumors were EBV-positive, with extensive DNA hypermethylation. Of this group, 80% harbored PIK3CA mutations, versus 3% to 42% for the remaining subtypes. Elevated PD-L1 and PD-L2 levels were also observed.

“The data from this group were intriguing,” says Bass. “Immune evasion could be a salient feature of EBV-positive gastric cancers.”

Ronan Kelly, MD, MBA, director of the Johns Hopkins Gastroesophageal Cancer Therapeutics program in Baltimore, MD, agrees, adding that immunotherapies are worth investigating. “We’ve reached a plateau with chemotherapy,” he says. “My colleagues at Johns Hopkins and I have data indicating that a significant number of these patients may benefit from PD-1/PD-L1 inhibitors.” He hopes to test this hypothesis in a clinical trial. A second subtype, comprising 20% of tumors, displayed high MSI associated with mutations in KRAS, ERBB3, and PTEN. “In colon cancer, tumors with MSI respond differently to adjuvant chemotherapy, which is factored into [the treatment] decision process,” notes Bass. “We haven’t done the same for gastric cancer, but this could change.”

Fully half of the tumors made up a third subtype, featuring chromosomal instability (CIN) and amplification of key genes, including EGFR. These were more prevalent in the gastroesophageal junction (GEJ), and notably—given the activity of ramucirumab (Cyramza; Lilly Oncology) in GEJ adenocarcinoma—VEGFA was also recurrently amplified. It would be interesting, Kelly says, to retrospectively analyze data from the REGARD and RAINBOW trials, to see if patients who benefited from ramucirumab had CIN tumors, because “we still don’t have a biomarker for VEGF therapies.”

Finally, the researchers characterized a fourth group lacking extensive copy-number alterations, mainly diffuse-type gastric tumors, as “genomically stable.” They found RHOA mutations almost exclusively in this subtype, and hypothesized that dysfunctional RHOA signaling contributes to a hallmark of diffuse tumors: diminished cellular cohesion. It potentially opens new therapeutic avenues for this deadly type of gastric cancer, says Bass. “It’s too early to know if what we’ve found will have similar impact as the discovery of different breast cancer subtypes,” he adds, “but I think this is a more rational way of categorizing gastric cancer patients.”

Avastin Approved for Some Cervical Cancers

On August 14, the FDA approved the angiogenesis inhibitor bevacizumab (Avastin; Genentech) to treat recurrent or metastatic cervical cancer. The approval represents the first meaningful clinical advance for treating the disease since 2004, when platinum-based chemotherapy combinations, such as cisplatin and paclitaxel, were found to be more active than single-agent cisplatin.

Bevacizumab is also approved for the treatment of colorectal cancer, glioblastoma, non–small cell lung cancer, and renal cell carcinoma.

The FDA based its approval on results from a randomized phase III trial showing that the addition of bevacizumab to chemotherapy extended median overall survival from 13 to 17 months (N Engl J Med 2014;370:734–43). Chemotherapy alone typically results in median survival of 7 to 12 months. Bevacizumab is the first targeted therapy to extend survival.

“With bevacizumab, not only did patients live longer but they lived longer without any significant deterioration in quality of life,” says Krishnansu Tewari, MD, professor and investigator of the phase III study. Hinting at new research possibilities, he adds, “That may present a window of opportunity to offer additional treatment to patients who are responding to bevacizumab and possibly extend their lives further.”

Researchers could use that window to test the effectiveness of new molecular therapies and immunotherapy, says Tewari. For example, pazopanib, an intracellular small-molecule tyrosine kinase inhibitor that targets VEGF receptor, and sorafenib, a multi-kinase inhibitor, have shown promise in treating advanced cervical cancer.

Minor Clone May Drive Cancer Growth

The most dominant cell type within a tumor is not necessarily the most dangerous, new research suggests. Rather, a small population of cancer cells may be responsible for driving a cancer’s growth and spread.

The findings offer new information about the many genetically distinct cells within a tumor, a phenomenon called intratumor heterogeneity (Nature 2014 July 30 [Epub ahead of print]). “Heterogeneity is important,” says the study’s senior author Kornelia Polyak, MD, PhD, a researcher at Dana-Farber Cancer Institute and professor of medicine at Harvard Medical School, both in Boston, MA. “We need to figure out what is really making tumors grow and target those cells, not just the cells that seem to be the most common within tumors.”

Researchers have generally assumed that a tumor’s growth was fueled by its largest subgroup of cells, the so-called dominant clone. This notion was based on what has been seen in lab-grown homogeneous cancer lines, not actual tumors, Polyak says.
Avastin Approved for Some Cervical Cancers

Cancer Discovery 2014;4:1109. Published OnlineFirst August 28, 2014.

Updated version Access the most recent version of this article at: doi:10.1158/2159-8290.CD-NB2014-131

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.