<table>
<thead>
<tr>
<th>IN THIS ISSUE</th>
<th>Highlighted research articles</th>
<th>1243</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEWS IN BRIEF</td>
<td>Important news stories affecting the community</td>
<td>1246</td>
</tr>
<tr>
<td>NEWS IN DEPTH</td>
<td>FDA Announces Plans to Regulate LDTs</td>
<td>1250</td>
</tr>
<tr>
<td>RESEARCH WATCH</td>
<td>Selected highlights of recent articles of exceptional significance from the cancer literature</td>
<td>1251</td>
</tr>
<tr>
<td>ONLINE</td>
<td>For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org</td>
<td></td>
</tr>
</tbody>
</table>

CONTENTS

NOVEMBER 2014

DNA-Damage Response during Mitosis Induces Whole-Chromosome Missegregation

S.F. Bakhoum, L. Kabeche, J.P. Murnane, B.I. Zaki, and D.A. Compton
Précis: Activation of the DNA damage response during mitosis leads to whole chromosome segregation defects via PLK1/Aurora A–mediated stabilization of kinetochore–microtubule attachments.
See commentary, p. 1256

research briefs

L-2-Hydroxyglutarate: An Epigenetic Modifier and Putative Oncometabolite in Renal Cancer

Précis: Accumulation of L-2-hydroxyglutarate in renal cell carcinoma as a result of somatic L2HGDH deficiency is associated with alterations in DNA and histone methylation.

in the spotlight

Collateral Genome Instability by DNA Damage in Mitosis

N. Jelluma and G.J.P.L. Kops
See article, p. 1281

Escaping Out of the Brain

J. Seoane and L. De Mattos-Arruda
See article, p. 1299

Insights into the Mechanism of Organ-Specific Cancer Metastasis

M.A. Rubin
See article, p. 1310

in focus

Social Interactomes for Enabling Research Communities

J. Guinney, R. Dienstmann, C. Ferté, S. Friend, and F. McCormick

Resistance to Anti-EGFR Therapy in Colorectal Cancer: From Heterogeneity to Convergent Evolution

S. Misale, F. Di Nicolantonio, A. Sartore-Bianchi, S. Siena, and A. Bardelli

Brain Tumor Cells in Circulation Are Enriched for Mesenchymal Gene Expression

Précis: Circulating tumor cells with invasive mesenchymal characteristics can be detected in patients with glioblastoma and may prove useful in disease monitoring.
See commentary, p. 1259

In Focus

Collateral Genome Instability by DNA Damage in Mitosis

N. Jelluma and G.J.P.L. Kops

See article, p. 1281

Escaping Out of the Brain

J. Seoane and L. De Mattos-Arruda

See article, p. 1299

Insights into the Mechanism of Organ-Specific Cancer Metastasis

M.A. Rubin

See article, p. 1310

Social Interactomes for Enabling Research Communities

J. Guinney, R. Dienstmann, C. Ferté, S. Friend, and F. McCormick

Resistance to Anti-EGFR Therapy in Colorectal Cancer: From Heterogeneity to Convergent Evolution

S. Misale, F. Di Nicolantonio, A. Sartore-Bianchi, S. Siena, and A. Bardelli

Brain Tumor Cells in Circulation Are Enriched for Mesenchymal Gene Expression

Précis: Circulating tumor cells with invasive mesenchymal characteristics can be detected in patients with glioblastoma and may prove useful in disease monitoring.
See commentary, p. 1259
The Androgen-Regulated Protease TMPRSS2 Activates a Proteolytic Cascade Involving Components of the Tumor Microenvironment and Promotes Prostate Cancer Metastasis

Précis: The serine protease TMPRSS2 enhances androgen-driven prostate cancer metastasis by inducing HGF cleavage and activation of c-MET signaling, and may represent a potential therapeutic target.

See commentary, p. 1262

The Genomic Landscape of Pediatric Ewing Sarcoma

Précis: Pediatric Ewing sarcoma is characterized by few somatic alterations at diagnosis but frequently exhibits loss of STAG2 expression, which is correlated with metastatic progression.

Genomic Landscape of Ewing Sarcoma Defines an Aggressive Subtype with Co-Association of STAG2 and TP53 Mutations

Précis: Ewing sarcoma tumors exhibit a low mutation rate but frequently harbor somatic mutations in STAG2, which are mutually exclusive with CDKN2A loss and correlate with TP53 mutations and poor prognosis.