PARP1-Driven Poly-ADP-Ribosylation Regulates BRCA1 Function in Homologous Recombination–Mediated DNA Repair

Yiduo Hu, Sarah A. Petit, Scott B. Ficarro, Kimberly J. Toomire, Anyong Xie, Elgene Lim, Shiliang A. Cao, Eunyoung Park, Michael J. Eck, Ralph Scully, Myles Brown, Jarrod A. Marto, and David M. Livingston
ABSTRACT

BRCA1 promotes homologous recombination-mediated DNA repair (HRR). However, HRR must be tightly regulated to prevent illegitimate recombination. We previously found that BRCA1 HRR function is regulated by the RAP80 complex, but the mechanism was unclear. We have now observed that PARP1 interacts with and poly-ADP-ribosylates (aka PARsylates) BRCA1. PARsylation is directed at the BRCA1 DNA binding domain and downmodulates its function. Moreover, RAP80 contains a poly-ADP-ribose-interacting domain that binds PARsylated BRCA1 and helps to maintain the stability of PARP1–BRCA1–RAP80 complexes. BRCA1 PARsylation is a key step in BRCA1 HRR control. When BRCA1 PARsylation is defective, it gives rise to excessive HRR and manifestations of genome instability. BRCA1 PARsylation and/or RAP80 expression is defective in a subset of sporadic breast cancer cell lines and patient-derived tumor xenograft models. These observations are consistent with the possibility that such defects, when chronic, contribute to tumor development in BRCA1−/− individuals.

SIGNIFICANCE: We propose a model that describes how BRCA1 functions to both support and restrict HRR. BRCA1 PARsylation is a key event in this process, failure of which triggers hyper-recombination and chromosome instability. Thus, hyperfunctioning BRCA1 can elicit genomic abnormalities similar to those observed in the absence of certain BRCA1 functions. Cancer Discov; 4(12):1430–47. © 2014 AACR.

INTRODUCTION

BRCA1 is a breast and ovarian cancer–suppressing gene and a major contributor to genome integrity control. The latter function is a major component of its tumor-suppressing function (1, 2). Among its various DNA damage response functions, BRCA1 normally promotes error-free, homologous recombination–type, DNA damage repair (HRR). Defects in this pathway lead to DNA damage and genomic instability. Strong genetic and epidemiologic links exist between BRCA1 function and its breast cancer suppression activity (3–6). Yet, how these phenomena are mechanistically connected is poorly understood.

Recent studies, including some from our group, showed that at least four BRCA1-containing nuclear protein complexes concentrate in double-strand break (DSB)–containing nuclear foci (e.g., ionizing radiation–induced foci, or IRIF) and participate in these structures in the HRR pathway (7–11). One of these, the RAP80 (aka UIMC1)–BRCA1 complex, regulates the concentration in IRIF of two HRR-promoting (pro-HRR), BRCA1-containing protein complexes [i.e., the CtBP (CtBP-interacting protein, aka RBBP8)–BRCA1 and BACH1 (aka BRIP1/FANCJ)–BRCA1 complexes]. BRCA1 employs this mechanism in a process that maintains a physiologic amplitude of HR-mediated DSB repair. Loss of amplitude regulation (aka tuning) after RAP80 depletion leads to excessive DSB end resection and the type of chromosomal instability that, when chronic, is associated with breast and ovarian cancer (12, 13).

Here, we report that PARP1 is a physiologic, RAP80- and BRCA1-associated protein and that its ability to operate as a poly-ADP-ribosyl transferase (pADRT) supports proper HRR tuning. More specifically, in this process, PARP1 poly-ADP-ribosylates (aka PARsylates) BRCA1, targeting its DNA binding domain and reducing its avidity for DNA. BRCA1 PARsylation is required for maintenance of the stability of the RAP80-BRCA1–PARP1 complex. Moreover, RAP80 contains a PAR-interacting domain (PID) that binds PARsylated BRCA1. This, in turn, enables fine-tuning of BRCA1 HRR function. A major outcome of this process is a BRCA1-driven contribution to chromosome integrity control.

RESULTS

PARP1 Is a Partner of the RAP80–BRCA1 Complex

Using crosslinking-assisted tag affinity purification, we identified a number of novel binding partners of the tagged RAP80–BRCA1 complex in HeLa S3 cells (N = 95; Supplementary Fig. S1A and S1B and see Supplementary Information for a detailed description of the method). These proteins can be portrayed as a network of communicating polypeptides,
PARP1 Promotes BRCA1 PARsylation

Interestingly, PARP1 was identified as one such RAP80–BRCA1 partner (Supplementary Fig. S1C and S1D). Results of a gel filtration experiment showed that PARP1 was detected in a wide range of fractions, including those containing BRCA1, RAP80, and ABRAXAS (ABRA1), another component of the RAP80 complex (Supplementary Fig. S1E). These results suggest that a fraction of the detected PARP1 is associated with the RAP80–BRCA1 complex.

We also detected an interaction between PARP1 and RAP80–BRCA1 by endogenous/endogenous co-immunoprecipitation (co-IP) performed in the absence of a cross-linking agent. As shown in Fig. 1A and B, endogenous PARP1 associated with endogenous BRCA1, RAP80, and ABRA1. PARP1 was also detected in endogenous BRCA1 IPs (Fig. 1C). Similar interactions between endogenous proteins were detected in co-IP experiments performed with other cell lines (e.g., U2OS, T98G, and 293T cells). The same co-IP results were detected in cell lysates treated with ethidium bromide, implying that the association between these proteins is not a result of nucleic acid bridging (Supplementary Fig. S1F; ref. 18).

PARP1 Promotes BRCA1 PARsylation

Interestingly, BRCA1 bands that smeared and migrated more slowly than normal BRCA1 p220 were detected in anti-PARP1 IPs (Fig. 1B). This suggested that the BRCA1 species that exist in complex with PARP1 are modified. To test whether these modified forms of BRCA1 represent PARsylated BRCA1, we performed co-IP with anti-poly-ADP-ribose (PAR) antibodies. Multiple BRCA1 bands that migrated more slowly than unmodified BRCA1 appeared in these IPs [Fig. 1C (lanes 5 and 6), a mouse monoclonal anti-PAR antibody was used in these IPs] and Fig. 1D (lanes 3 and 4, a rabbit polyclonal anti-PAR antibody was used in these IPs)]. Similar results were obtained when other cell lines were examined, including U2OS, T98G, 293T, MCF7, and telomerase-immortalized, anti-PAR antibody was used in these IPs). Similar results were further confirmed that a fraction of endogenous BRCA1 is PARsylated in cells.

BRCA1 PARsylation Is Directed at Its DNA Binding Domain and Controlled by an Internal Sequence

We attempted to determine which segments of BRCA1 are targeted by this modification. Given that mass spectrometry analyses of full-length BRCA1 were uninformative (see Supplementary Information), we asked whether any of a collection of different GST-BRCA1 p220 fragments that, collectively, represent the entire protein are PARsylated by PARP1 in a cell-free assay (see Supplementary Information). We found that the reaction primarily targeted one fragment, i.e., F3.7 = aa 501–744 (Supplementary Fig. S2A–S2F). This fragment is encoded by BRCA1 exon 11 (Fig. 2A). Of note, F3.7 contains sequences that support both BRCA1 nuclear localization (27, 28) and its DNA binding activity (29–32; Fig. 2A).

We next asked whether BRCA1 PARsylation results in PAR being conjugated to a specific residue(s) in F3.7. However, after extensive analyses, it appeared that PAR was directed to a number of sites in the F3.7 region (see details in Supplementary Fig. S3A–S3D and Supplementary Information). Such nonunique mono- or poly-ADP-ribose modifications—some
PARP1-Driven BRCA1 PARsylation Regulates HRR

Figure 1. PARP1 is a partner of the RAP80–BRCA1 complex and promotes BRCA1 PARsylation. A, HeLa cells were exposed to 10 Gy IR or mock treated and lysed 4 hours later. IP was performed with a rabbit polyclonal anti-RAP80 antibody or IgG control. The IPs were blotted, and the blots were probed with antibodies to PARP1, BRCA1, ABRA1, 53BP1, or RAP80. Five percent of total cell lysate was blotted as an input control in all IP experiments. B, HeLa cells were treated as described in A. IPs were generated with a monoclonal anti-PARP1 antibody or IgG control, blotted, and the blots were probed with antibodies to BRCA1, RAP80, ABRA1, 53BP1, or PARP1. C, HeLa cells were treated as described in A. IPs were generated with a rabbit polyclonal anti-BRCA1 antibody, or a monoclonal anti-PAR antibody, or IgG control, blotted, and the blots were probed with antibodies to BRCA1 or PARP1. *, migration position of IgG heavy chain. D, HeLa cells were treated as described in A. IPs were generated with a rabbit polyclonal anti-PAR antibody or an IgG control and blotted, and the blots were probed with a monoclonal antibody to BRCA1. E, HeLa cells were treated, and anti-PAR IPs were performed as described in D. Immunoprecipitated proteins were eluted and then incubated with PARG or with buffer only. Proteins were then blotted and probed with a BRCA1 antibody. F, Parp1−/− MEFs were stably reconstituted with human PARP1 cDNA or empty vector. Cells were treated with 10 Gy IR or mock treated and then lysed after 2 hours of recovery. IPs were performed with an anti-PAR antibody and then probed with an antibody directed against mouse BRCA1. Input proteins were blotted directly and probed with antibodies recognizing PAR [a different antibody from that used in the PAR IP], mouse BRCA1, or PARP1. G and H, in vivo incorporation of biotinylated-NAD (bio-NAD). G, a schematic diagram showing the experimental procedure (see details in Methods). H, Western blots (WB) showing that BRCA1 and Histone H2B were detected in streptavidin precipitates, whereas olaparib pretreatment blocked bio-NAD incorporation. Total proteins (20 μg) were loaded as an input control.

within discrete/specific protein domains—have been described for other proteins (for reviews, see refs. 33–35).

Given that the F3.7 region rather than specific residues within it was targeted for PARslation, we asked whether there is a dedicated F3.7 sequence that targets PARslation to this region. We focused on 10 nonoverlapping segments of F3.7, each composed of eight residues. This is because, collectively, they encompass the most evolutionarily conserved region within this BRCA1 segment (refs. 36, 37; Fig. 2A and Supplementary Figs. S3C, SD1–SD10). The question was whether deletion of any of them from F3.7 affects its ability to be mono- and/or poly-ADP-ribosylated.

Repeatedly, internal deletion of the D5 segment, which contains BRCA1 p220 residues 611–618 (LRRKSSTR), inhibited both cell-free mono- and poly-ADP-ribosylation of otherwise intact F3.7 (Supplementary Fig. S3E). Moreover, mass...
PARsylation modulates BRCA1 DNA binding activity. A, a schematic diagram showing elements of the domain structure of human BRCA1 p230. Domains are labeled under the protein diagram, whereas some of their respective binding partners are indicated above. The section indicated between the two dotted lines is encoded by BRCA1 exon 11. The dark blue lines indicate previously mapped regions required for BRCA1 DNA binding activity. The green line shows the location of BRCA1 fragment F3.7, which is targeted by PARsylation. B, the BRCA1-D5 mutant is defective for PARsylation in cells. The 293T cells were sequentially transfected with the indicated combinations of control siRNA or siRNA-resistant BRCA1-WT, or siRNA-resistant BRCA1-D5, as indicated. Forty-eight hours later, cells were irradiated with 10 Gy IR and lysed after 2 hours. IPs were performed with an anti-PAR or an anti-HA antibody (recognizing HA-tagged BRCA1). Immunoprecipitated proteins were blotted, and the blots were probed with HA or MYC antibody (recognizing MYC-tagged BARD1), respectively. Input samples were blotted, and the blots were probed with HA, MYC (BARD1), or actin antibody.

C, the BRCA1-D5 mutant exhibits stronger association with chromatin fractions compared with BRCA1-WT. The 293T cells transfected with either control or siRNA were subsequently transfected with vector, siRNA-resistant BRCA1-WT, or siRNA-resistant BRCA1-D5, as indicated. Forty-eight hours later, cells were irradiated with 10 Gy IR and collected after 4 hours. Cells were processed for extraction to separate soluble and chromatin fractions. Equivalent amounts of lysate protein derived from each fraction were blotted, and the blots were probed with HA, BRCA1 (endogenous and HA-tagged BRCA1), or actin antibody.

D, in vitro PARsylation or mock-treated, Unbound protein DNA-bound protein DNA-bound protein on DNA-Biotin-Streptavidin beads (prepared using the procedure shown in D). Extensive washes to remove PARP1. Protein released from glutathione beads on beads. Protein remained bound. Protein remained bound. Protein released.

E, GST-F3.7 bound on DNA-Biotin-Streptavidin beads (prepared using the procedure shown in D).

F, GST-F3.7 bound on DNA-Biotin-Streptavidin beads (prepared using the procedure shown in D).

PARP1-Driven BRCA1 PARsylation Regulates HRR

PARP1-driven BRCA1 PARsylation triggers the release of BRCA1 that is already bound to DNA (Fig. 2F). As shown in Fig. 2G, incubating biotinyl DNA-bound BRCA1 F3.7 (Fig. 2G, lane 2, bottom) with purified PARP1 and NAD completely released F3.7 from DNA (Fig. 2G, lane 3, bottom), and the released F3.7 was clearly PARsylated (Fig. 2G, lane 4, top). However, a significant amount of F3.7 remained DNA when PARP1 enzymatic activity was inhibited by olaparib (Fig. 2G, lane 5, bottom), and GST did not bind four-way junction-structured DNA (data not shown). Thus, PARsylation led to the release of BRCA1 F3.7 from a DNA substrate ex vivo.

Stability of RAP80–BRCA1 Complexes after DNA Damage Requires BRCA1 PARsylation and Proper Interactions between Subunits

Because PARP1 is a RAP80–BRCA1 partner, we asked whether PARP1 enzymatic activity affects the integrity of RAP80–BRCA1 complexes. In cells exposed to a PARP inhibitor, olaparib, post-IR BRCA1–RAP80 binding was significantly weakened, particularly at late time points after irradiation (Fig. 3A, lanes 7–10). By contrast, olaparib exposure had no effect on the ability of CtIP, BACH1, or RAD51 to co-IP with BARD1, a heterodimeric partner of BRCA1 (ref. 3B; Supplementary Fig. S6A), or on BRCA1–BARD1 co-IP (Fig. 3B, lanes 5–8).

In keeping with this observation, the interaction between the non-PARsylatable BRCA1 mutant BRCA1-D5 and RAP80 was mostly lost after DNA damage. However, its interaction with CtIP or BACH1 was unaffected (Supplementary Fig. S6B, compare lane 7 with lane 3). Thus, PARP1-driven BRCA1 PARsylation is required for stable BRCA1–RAP80 complex formation, but not for BRCA1–CtIP or BRCA1–BACH1 binding.

Just as olaparib disrupted the interaction between PARP1 and BARD1 (Fig. 3B, compare lanes 5–8 with lanes 1–4), RAP80 depletion (by shRNA transduction) also disrupted the association between BARD1 and PARP1 (Fig. 3B, lanes 9–12). As expected, the interaction between BRCA1 and BARD1 was unaffected by either treatment (Fig. 3B, top). Thus, BRCA1 PARsylation and RAP80 are individually required for PARP1–BRCA1/BARD1–RAP80 complex stability.

Earlier studies showed that ABR1 bridges RAP80 and BRCA1 and that the interaction between BRCA1 and ABR1 does not require RAP80 either before or shortly after IR (i.e., ≤2 hours; refs. 10, 39, 40). However, at a late time point (4 hours) after IR, we found that ABR1 binding to BRCA1/BARD1 was weakened in RAP80-depleted cells (Fig. 3B, lanes 9–12). Moreover, when cells were exposed to both RAP80 shRNA and olaparib, the interaction between ABR1 and BRCA1–BARD1 was further impaired (Fig. 3B, lanes 13–16).
The interaction between PARsylated BRCA1 and RAP80 is required for maintaining BRCA1–RAP80–PARP1 complex integrity after DNA damage and normal HRR regulation. A, HeLa cells stably expressing FLAG/HA-tagged RAP80 (eRAP80) were incubated with 30 nmol/L olaparib for 48 hours and then irradiated with 10 Gy IR. Cells were lysed 30, 60, 120, or 240 minutes after IR. IPs were performed with antibodies directed against FLAG (recognizing eRAP80) and then probed with an anti-HA (recognizing eRAP80) or an anti-BRCA1 antibody. B, HeLa cells that stably express FLAG/HA-tagged BARD1 (eBARD1) and an shRNA containing either a RAP80-targeting or a control sequence were generated. Where indicated, these cells were incubated with 30 nmol/L olaparib or DMSO for 48 hours. Cells were then irradiated with 10 Gy IR and lysed 60, 120, or 240 minutes later. IPs were performed with anti-FLAG antibody (recognizing eBARD1) and then probed with antibodies directed against BRCA1, PARP1, or ABRA1. Input proteins were blotted and probed with antibodies against PARP1, RAP80, or ABRA1. The asterisk in the ABRA1 blot indicates the migration position of a nonspecific band detectable by this antibody. C, HeLa cells stably expressing eRAP80 were infected with a lentivirus encoding an shRNA directed at Luciferase (shLuc). Cells were incubated with 30 nmol/L olaparib or DMSO for 48 hours. Cells were then irradiated with 10 Gy IR or mock treated. Cells were collected 4 hours after IR. IPs were performed with antibodies directed at FLAG (recognizing eRAP80) or BRCA1 and then probed with anti-PARP1 antibody. Input samples were blotted and probed with antibodies against BRCA1, PARP1, RAP80, or ABRA1. The asterisk in the ABRA1 blot indicates the migration position of a nonspecific band detectable by this antibody. D, Schematic diagrams indicate the domain structure of human RAP80. ZnF, Zinc finger domain. The sequences of the PID domain in four mammalian species are shown. The conserved K/R-rich cluster, hydrophobic, and basic amino acids are indicated in different colors. Seven conserved amino acids (underlined) were mutated to alanine (A) in the mPID mutant. Structures of six N-terminal GST or C-terminal FLAG/HA-tagged RAP80 mutants and an N-terminal T7-tagged RAP80 PNU fragment are shown below. E, 293T cells were transiently transfected with the RAP80-FLAG/HA vectors described in D and, 72 hours later, cells were irradiated with 10 Gy IR. Cells were lysed 3 hours later, and IPs were generated with an anti-BRCA1 antibody, the immunoprecipitated proteins were blotted, and the blots were probed with an anti-HA (top and middle plots) antibody, *, the position of IgG heavy chain. Protein (15 μg) from each lysate was loaded onto each gel lane, and the subsequent blots were probed with an anti-BRCA1 antibody (bottom). F, 293T cells were treated as in E. IPs were performed with an anti-PARP1 antibody. Immunoprecipitated proteins were blotted and probed with an anti-HA antibody to recognize epitope-tagged RAP80 mutants (top). *, migration position of IgG heavy chain. Protein (15 μg) from each lysate was loaded onto each gel lane, and the subsequent blots were probed with anti-HA (middle) or anti-PARP1 antibody (bottom). G, a graph summarizing relative HRR frequencies of cells overexpressing WT RAP80 or various RAP80 mutants. DR-GFP HRR assays were performed as described in Methods. The abundance of GFP-positive (HRR) cells overexpressing WT RAP80 was normalized to one. Experiments were performed in triplicate, and error bars indicate SD. *, P < 0.05; **, P < 0.01; ***, P < 0.001. H, a schematic diagram showing the relationship between PARP1, BRCA1, ABRA1, and RAP80 in the HRR-tuning complex. Red arrow, PARP1 promotes BRCA1 PARylation. Blue arrow, binding of PAR to the RAP80 PID domain. BRCA1–BRCT and DNA-binding (DBD) domains, and RAP80 UIM domain, are also indicated in the diagram.
PARP1-Driven BRCA1 PARsylation Regulates HRR

Thus, RAP80 and PARsylation are also both required for stable BRCA1–ABRA1 interaction.

We then depleted ABRA1 from cells and examined its effects on RAP80–BRCA1/BARD1–PARP1 complex stability. Under this condition, the interaction between RAP80 and PARP1 was significantly weakened, but the interaction between BRCA1 and PARP1 was not affected (Fig. 3C). Thus, the association between RAP80 and PARP1, although indirect, is largely mediated through the BRCA1–ABRA1 complex.

These data reinforce the view that the overall integrity of RAP80–ABRA1–BRCA1/BARD1–PARP1 complexes is influenced by specific interactions between subunits, PAR, and PARsylated BRCA1. Parenthetically, because BRCA1 was still PARsylated in RAP80- or ABRA1-depleted cells (Supplementary Fig. S6C and data not shown), RAP80 and ABRA1 are not required for BRCA1 PARsylation per se.

Only a small fraction of the RAP80 within RAP80–BRCA1 complexes immunoprecipitated with PARsylated BRCA1 in an immunoprecipitation followed by re-immunoprecipitation (IP-re-IP) experiment (Supplementary Fig. S6D, lanes 5 and 6). This is in keeping with the knowledge that only a small fraction of BRCA1 in cells is PARsylated. Because rapid turnover is a common fate for DNA damage–induced ADP-riboside polymers (41), we speculate that BRCA1 PARsylation is a transient modification subject to rapid turnover.

RAP80 Possesses a Functioning PID That Is Required for Normal HRR Tuning

Some proteins that functionally communicate with PARP1 and/or PARsylated proteins contain specific domains that bind PAR. These PIDs play critical roles in performing and/or regulating PARsylation-related biologic processes (33, 42). One such PID contains a stretch of 19 to 21 amino acids that begins with a cluster of basic residues followed by a pattern of hydrophobic amino acids interspersed with basic residues (43–45). We identified such a 21-residue region at the N-terminus of RAP80. It is well conserved in mouse, rat, and bovine RAP80 (Fig. 3D).

To test whether this motif behaves as a bona fide PID, tagged RAP80 mutants were generated (Fig. 3D). The PAR-binding activity of purified GST-tagged, full-length WT RAP80 and of comparable amounts of these mutant derivatives (Supplementary Fig. S7A) was tested in a slot-blot binding assay. GST-WT RAP80 bound purified PAR polymers, whereas GST did not (Supplementary Fig. S7B). The PAR-binding capacity of mPID or ∆PID was significantly weaker than that of WT (Supplementary Fig. S7B), suggesting that RAP80 can bind PAR, mediated at least in part through its PID. Histone H1, which also contains a PID, served as a positive control (46).

We next asked whether the RAP80 PID could interact directly with PARsylated BRCA1. Because full-length RAP80 binds BRCA1 protein through multiple domains in vitro (data not shown), we tested the binding of a RAP80 fragment that retained only the PID, nuclear localization sequence (NLS), and ubiquitin-interacting motif (UIM) motifs (Fig. 3D, fragment PNU) to PARsylated and unmodified BRCA1 F3.7 (i.e., the BRCA1 segment targeted by PARsylation). Mutant fragments containing an mPID mutation, ∆PID, or a UIM deletion (UAIM) were also tested. The results indicate that the RAP80 PID but not its UIM domain is required for efficient binding to PARsylated BRCA1 F3.7. Moreover, PARsylation of BRCA1 F3.7 was required for this interaction (Supplementary Fig. S7C). Thus, the RAP80 PID facilitates the binding of PARsylated BRCA1 in the RAP80–BRCA1 complex.

Because PARsylation supports the integrity of RAP80–BRCA1 complexes after DNA damage (cf. Fig. 3A and Supplementary Fig. S6B), we asked whether the RAP80 PID contributes to this function. Consistent with the finding that the RAP80 PID is required for binding to PARsylated BRCA1 F3.7 in vitro (Supplementary Fig. S7C), HA-tagged mPID and ∆PID were defective in their association with intact BRCA1 in cells after IR by comparison with WT and other RAP80 mutants (Fig. 3E). Moreover, mPID or ∆PID was also defective in binding to endogenous PARP1 in cells (Fig. 3F). This implies that the PID is required for the stable association of RAP80 and PARP1 (through BRCA1; Fig. 3C). The interaction defect was not associated with failure of these mutants to concentrate in IRIF, because mPID and ∆PID concentrated there normally, whereas, as expected, ∆UIM failed to do so (refs. 8–10, 47; Supplementary Fig. S7D).

Thus, the RAP80 PID domain, likely through an interaction with PARsylated BRCA1, contributes to overall RAP80–BRCA1–PARP1 complex stability after DNA damage. That said, it is not required for RAP80 concentration in IRIF.

Because a defective PID cannot sustain a normal interaction between RAP80 and either BRCA1 or PARP1 (cf. Fig. 3E and F), we asked whether expressing RAP80 mPID or ∆PID interferes with RAP80-driven HRR-regulation function. Indeed, expression of each resulted in significantly higher HRR frequencies in U2OS cells that contain a single, integrated DR-GFP HRR reporter (U2OS-DR-GFP; refs. 48, 49). As controls for nonspecific effects, two other deletion mutants that map outside of the PID sequence, M2 and M4, had no such effect (Fig. 3G). These data imply that RAP80–PAR binding is required to sustain proper HRR regulation.

∆UIM expression also led to higher HRR frequencies. This result implies that RAP80–polyubiquitin binding, which tethers RAP80 in postdamage foci, is also required for it to function in HRR regulation (Fig. 3G).

ABRA1 serves as another bridge between RAP80 and BRCA1 (10, 39, 40). Thus, we wondered whether this interaction was also important for HRR regulation. The RAP80 sequences that are required for ABRA1 binding map to two partially overlapping regions within aa 235–400 of RAP80 (10, 39). Our RAP80 M2 and M3 mutants cover this region (Fig. 3D). Although the M3 mutant was functional for PAR binding in vitro (Supplementary Fig. S7B), its binding to BRCA1 was considerably weaker than WT (Fig. 3E), presumably due to its defective interaction with ABRA1. Consistent with this observation, expression of the M3 mutant also resulted in increased HRR (Fig. 3G).

Therefore, in addition to maintaining the integrity of RAP80–ABRA1–BRCA1/BARD1–PARP1 complexes, these results imply that the contribution to HRR regulation by RAP80 also requires its intact PID–BRCA1 and ABRA1–BRCA1 interactions as well as normal UIM-polyubiquitin binding (Fig. 3H).

BRCA1 PARsylation Is Required for Normal HRR Regulation

Consistent with the observation that olaparib led to increased BRCA1 chromatin association at sites near a single
DSB (Supplementary Fig. S5), the magnitude of HR repair of this DSB increased after PARP1 depletion or exposure to 30 nmol/L olaparib (Supplementary Fig. S8A–S8C). A similar increase was observed in a mouse embryonic stem (ES) cell line containing an independent HRR reporter (Supplementary Fig. S8D). At this olaparib concentration, the inhibitor blocked PARP1 enzymatic activity effectively but did not cause detectable DNA damage, cell-cycle changes, or toxicity (Supplementary Fig. S8E and S8F).

Two studies previously reported that PARP1 inactivation or inhibition did not affect the outcomes of I-SceI-induced HRR (50, 51). To address the apparent difference in our observations, we compared the effects of four different PARP inhibitors—1,5-dihydroxyisoquinoline (ISQ), which was used in one of the two studies noted above (50), olaparib, veliparib, and BMN-673. BMN-673 is the most potent and specific PARP1 inhibitor known to date with an IC_{50} against PARP1 of approximately 0.5 nmol/L (52). In this experiment, we used a U2OS cell line that allows one to measure both I-SceI-induced short track gene conversion (STGC)–type and long track gene conversion (LTGC)–type HRR (Fig. 4A). The former is a faithful reflection of error-free HRR, and the latter could give rise to nonallelic, error-prone recombination events (53, 54).

When cells were exposed to each of these inhibitors over a range of relatively low concentrations (i.e., 5–40 times the IC_{50} for PARP1 for each inhibitor; Supplementary Fig. S8G), all four stimulated HRR (both STGC and LTGC) to various extents (Supplementary Fig. SBH and S8I). However, at
higher doses, ISQ either had no effect (at 75 μmol/L) or actually inhibited HRR (at 300 μmol/L; Supplementary Fig. S8H and S8I). The ISQ concentration used in the earlier report was 600 μmol/L (50). These data suggest the presence of an off-target effect by a compound (ISQ) with significantly lower avidity for PARP1 than the other inhibitors. Thus, the effect of PARP inhibitors on HRR is dose dependent. Within a range that elicited what are likely to be on-target effects, HRR stimulation was a constant finding.

To further determine the effect of BRCA1 PARsytlation on HRR and to avoid potential confounding effects of PARP1 inhibition or depletion, we analyzed cells that transiently expressed HA-tagged BRCA1-WT or identically tagged, PARsytlation-defective BRCA1-D5. Each was expressed at levels comparable to that of endogenous BRCA1. Moreover, the mRNA for both had been rendered comparable to that of endogenous BRCA1. Thus, the effect of PARP inhibitors on HRR is dose dependent. Within a range that elicited what are likely to be on-target effects, HRR stimulation was a constant finding.

As described earlier, cells reconstituted with the non-PARsytlatable BRCA1-D5 revealed a higher HRR amplitude than those reconstituted with BRCA1-WT (cf. Fig. 4C and D). Thus, we expected to find that BRCA1-D5–expressing cells revealed even fewer damaged chromosomes than BRCA1-WT–reconstituted expressing cells. Surprisingly, BRCA1-D5–expressing cells revealed significantly higher frequencies of fusion/bridges (Fig. 5B, column 4), radial structures (Fig. 5C, column 4), and complex rearrangements (Fig. 5D, column 4) than those of cells expressing BRCA1-WT. Indeed, the frequencies of complex rearrangements in BRCA1-D5–expressing cells were 5- to 7-fold higher than those in control, BRCA1-depleted, or BRCA1-WT reexpressing cells (Fig. 5D, compare column 4 with columns 1, 2, and 3). In contrast, there was no difference in the frequencies of breaks/gaps between BRCA1-WT and BRCA1-D5 reexpressing cells (Fig. 5E, column 4).

These data indicate that BRCA1 PARsytlation is required for normal HRR amplitude regulation. We hypothesize that the hyper-HRR phenotype associated with PARP1 inhibition is a product of defective BRCA1 PARsytlation, because it was the only major difference observed between BRCA1-D5 and BRCA1-WT–driven HHR function in these experiments.

BRCA1 PARsytlation Is Required for Maintaining Chromosome Integrity in Response to DNA Damage

Recent studies demonstrated that the chromosomal rearrangements observed after IR exposure in BRCA1-deficient cells are largely a product of combining inactive HRR with overactive, end joining–mediated, and erroneous repair of DSBs (55, 56). Because cells in which endogenous, WT BRCA1 was replaced by the non-PARsytlatable mutant BRCA1-D5 actually revealed higher HRR activity (cf. Fig. 4C and D), we asked whether there were fewer rearranged chromosomes induced by DNA damage in these cells compared with cells expressing comparable amounts of BRCA1-WT (Supplementary Fig. S9A).

To test this possibility, we irradiated cells and then analyzed them for chromosomal abnormalities. Each damaged or rearranged chromosome present in a series of cell spreads was assigned to one of four categories: (i) fusions/bridges (F), in which two chromatids from different chromosomes appear to be connected; (ii) radial structures (R), in which chromosomes are composed of three- or four-armed structures; (iii) complex rearrangements (C), in which three or more chromosomes are connected to form complex structures that cannot be assigned to any of the other three types; and (iv) chromatid breaks/gaps (B; Fig. 5A).

Compared with cells transduced with control (shLuc) shRNA, cells in which endogenous BRCA1 was depleted by shBRCA1 (Supplementary Fig. S9A) displayed significantly higher frequencies of fusions/bridges (Fig. 5B, column 2) and radial structures (Fig. 5C, column 2). But there were only slight increases in complex rearrangements (Fig. 5D, column 2) and breaks/gaps (Fig. 5E, column 2) in these cells.

Reintroduction of shRNA-resistant BRCA1-WT expression in these endogenous BRCA1-depleted cells (Supplementary Fig. S9A) partially reduced the frequencies of fusion/bridges (Fig. 5B, column 3) and radial structures (Fig. 5C, column 3).

As described earlier, cells reconstituted with the non-PARsytlatable BRCA1-D5 revealed a higher HRR amplitude than those reconstituted with BRCA1-WT (cf. Fig. 4C and D). Thus, we expected to find that BRCA1-D5–expressing cells revealed even fewer damaged chromosomes than BRCA1-WT–reconstituted expressing cells. Surprisingly, BRCA1-D5–expressing cells revealed significantly higher frequencies of fusion/bridges (Fig. 5B, column 4), radial structures (Fig. 5C, column 4), and complex rearrangements (Fig. 5D, column 4) than those of cells expressing BRCA1-WT. Indeed, the frequencies of complex rearrangements in BRCA1-D5–expressing cells were 5- to 7-fold higher than those in control, BRCA1-depleted cells either before or after BRCA1-WT reexpression (Fig. 5D, compare column 4 with columns 1, 2, and 3). In contrast, there was no difference in the frequencies of breaks/gaps between BRCA1-WT and BRCA1-D5 reexpressing cells (Fig. 5E, column 4).

Given these observations, we hypothesized that certain forms of chromosome rearrangement observed in cells expressing BRCA1-D5 might be the result of aberrant HRR-dependent repair. To test this, we cotransfected cells with siRNAs targeting RAD51 or EXO1+DNA2L. RAD51 is the prime recombinase required for performing homology search and strand exchange reactions in HRR (57). EXO1 and DNA2L are two major nucleases that facilitate the generation of long, single-stranded DNA segments needed for HRR (58).

Importantly, depletion of either RAD51 or EXO1+DNA2L reduced the levels of both radial structures (Fig. 5C, compare columns 7 and 10 with column 4) and complex rearrangements (Fig. 5D, compare columns 7 and 10 with column 4) in BRCA1-D5–expressing cells. This suggests that these two types of chromosome aberration in cells expressing BRCA1-D5 were dependent upon key aspects of the HRR mechanism.

Transfecting cells with RAD51 or EXO1+DNA2L siRNAs resulted in the blocking of HRR downstream of BRCA1–CtIP (59, 60). This would result in arrested repair of those initial IR-induced chromosomal breaks that would have been repaired by HRR. Therefore, we expected to observe higher accumulations of chromosomal breaks/gaps in cells expressing BRCA1-D5 than in control, BRCA1-depleted, or BRCA1-WT reexpressing cells, when RAD51 or EXO1+DNA2L were depleted. This was indeed the case (Fig. 5E, columns 7 and 10). This result further suggests that hyperactive, aberrant HRR is responsible for the radial structures and complex rearrangements seen in cells expressing BRCA1-D5.
Figure 5. Defective BRCA1 PARylation results in HRR-dependent chromosome rearrangements after IR. A, representative metaphase spreads of U2OS cells: transduced with control shRNA (shLuc), shBRCA1, transduced with shBRCA1 and re-expressing BRCA1-WT or BRCA1-D5, or cells transfected with RAD51 siRNA or EXO1+DNA2L siRNA in addition to the previous treatment. Cells were irradiated with 150 rad and collected 8 hours later for chromosome analysis. White letters in each spread indicate the nature of aberrant chromosomes present: B, chromatid breaks/gaps; F, fusions/bridges; R, radial structures; C, complex rearrangements. B–E, bar graphs showing frequencies of these various aberrant chromosomes in cells treated with indicated combinations of shRNA, siRNA, and/or cDNAs. B, frequencies of fusions/bridges. C, frequencies of radial structures. D, frequencies of complex rearrangements. E, frequencies of chromatid breaks/gaps. At least 50 metaphase spreads were counted for each category of cells. Statistical analyses were performed using the Kruskal–Wallis tests. Results of selected multiple comparisons are shown. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001; n.s., not significant.
PARP1-Driven BRCA1 PARsylation Regulates HRR

In these experiments, RAD51 depletion elicited a much stronger inhibitory effect on HRR than EXO1+DNA2L depletion, because other nucleases could compensate for some lost function of EXO1 and DNA2L (Supplementary Fig. S9B). Moreover, RAD51 function is considered essential for HRR. This may help to explain why RAD51 depletion led to a more extensive reduction in radial structures and complex rearrangements than depletion of EXO1+DNA2L (Fig. 5C and D).

In summary, these observations indicate that defective BRCA1 PARsytlation, observed in cells expressing BRCA1-D5 in place of WT BRCA1, fosters the development of chromosome aberrations after DNA damage. Thus, loss of BRCA1 function, which leads to HRR deficiency and a preference for nonhomologous end joining (NHEJ)–type repair, and deregulated, excessive BRCA1 HRR activity can both elicit deleterious, mutagenic chromosome instability (Fig. 6A and B).

Finally, RAD51 or EXO1+DNA2L depletion had no significant impact on the frequencies of fusions/bridges in cells expressing BRCA1-D5, which remained significantly higher than other groups of cells (Fig. 5B). We speculate that a BRCA1-D5 function other than promoting hyper-HRR is responsible for this abnormal phenotype. This is consistent with the fact that BRCA1 engages in repair processes other than HRR and that BRCA1-D5 may participate in these and yet other deregulated repair processes (61, 62).

The BRCA1 PARsytlation–RAP80 Pathway Is Defective in a Subset of Breast Cancer Cells and Tumors

Because BRCA1 is a breast cancer gene, we investigated whether BRCA1 is PARsytlated in normal human mammary and breast cancer cells. Here, we examined a panel of 13 well-established sporadic breast cancer cell lines along with iMECs, a telomerase-immortalized normal, primary mammary epithelial cell line (Fig. 7A). Among the 13 breast cancer cell lines, 9 were characterized as triple-negative, basal-like (TNBC, i.e., ER−, PR−, and HER2 not amplified) subtype. Two of them contained disease-producing mutations in the BRCA1 gene. The remaining four were of the luminal subtype (63, 64).

We evaluated the status of BRCA1 PARsytlation in these cell lines before and after IR by IP–Western assay (Fig. 7A). Surprisingly, although comparable levels of intact BRCA1 p220 were detected in all but the two BRCA1-mutant lines (HCC1937 and SUM149; Fig. 7A), the levels of PARsytlated BRCA1 were significantly lower or even undetectable in...
Figure 7. BRCA1 PARylation and/or RAP80 expression is suppressed in a subset of breast cancer cell lines and tumors. A, results of IP–Western blots searching for BRCA1 PARylation in a panel of normal breast and breast cancer cell lines (the pathologic subtype of each cell line is indicated above the relevant blot; B1 mut, cell lines that contain pathologic BRCA1 mutations). Cells were irradiated with 10 Gy IR or mock treated, and collected 8 hours later for analysis. IPs were performed using a rabbit polyclonal anti-BRCA1 antibody. Immunoprecipitated proteins were blotted and probed with a monoclonal anti-PAR antibody (top plots) or a monoclonal anti-BRCA1 antibody (the second row of plots). Protein extract (20 μg) from each cell line was blotted and probed with antibodies recognizing PARP1, CtIP, RAP80, ABRA1, and actin, respectively. B–D, results of Western blots detecting BRCA1, PARP1, RAP80, ABRA1, and actin expression in subsets of tumor samples from PDX models. Protein extract (20 μg) from each tumor was blotted and probed with antibodies recognizing the above noted proteins. "m" indicates lanes that were loaded with extracts from mouse breast tissues. Please note that mouse BRCA1, RAP80, and ABRA1 were not detectable by the antibodies used, which specifically recognize human proteins. Results shown were obtained in three different experiments using independent snap-frozen tumor samples (see Supplementary Methods). E, table summarizing the results of protein expression analysis by Western bloting of tumor samples from 17 PDX models. +, positive; −, negative; +/−, weaker expression than other samples. Samples with defective RAP80 and/or ABRA1 expression are indicated in red. N.D., not determined.
PARsylation (data not shown). A mutant D5 sequence also failed to interfere with BRCA1 recruitment to sites of DNA damage (i.e., nuclear foci) or its interactions with known BRCA1 partner proteins that perform important steps in HRR (cf. Supplementary Figs. S4 and S6). Therefore, it is possible that the role of this sequence is to maintain a critical structural conformation of BRCA1 that is required for proper and timely PARsylation and subsequent modulation of BRCA1 DNA binding activity. Yet other possibilities exist. However, due to the location of the D5 sequence within the exon 11-encoded region, which is neither functionally nor structurally well characterized, we are currently unable to test the conformation hypothesis.

Unexpectedly, hyper-recombination resulting from defects in BRCA1 PARsylation was associated with the appearance of radial structures and complex chromosome rearrangements shortly after DNA damage. In contrast to the radial structures observed in BRCA1-depleted cells, which are dependent on S3BP1 and the NHEJ pathway (55, 56), those observed in BRCA1-D5–expressing cells were hyper-HRR dependent. The complex rearrangements observed in BRCA1-D5 cells were similarly hyper-HRR dependent (cf. Figs. 5 and 6A). Because these rearranged chromosomes emerged within one cell cycle, they might represent products of unresolved recombination intermediates.

PARP1 is an abundant enzyme that likely participates in multiple pathways, which, directly or indirectly, affect the outcome of HRR. Two previous reports, both of which also used I-SceI–based HRR reporters, concluded that PARP1 is not involved in the repair of I-SceI–induced DSBs (50, 51)—in contrast to what was reported here. In keeping with the apparent off-target effects triggered by very high concentrations of ISQ (cf. Supplementary Fig. S8G–S8I), differences in experimental conditions may have contributed to this discrepancy. In addition, the immortalized Parp1−/− MEF cells used in one of the above-noted studies (51) retained detectable, albeit low-level BRCA1 PARsylation activity, probably due to compensatory expression of other PARPs (refs. 21; Fig. 1F). Therefore, a possible explanation for the lack of effect on HRR in these Parp1−/− MEFs is that other PARPs, through an emerging state of adaptation, were able to support normal HRR regulation at a single I-SceI–induced DSB in these cells. Whatever the case, the demonstration that ISQ, at concentrations much closer to its IC50, enhanced HRR, much like three more specific PARP inhibitors (Supplementary Fig. 8H1 and 8H1), reinforces the view that PARP1 functions, at least in part, by negatively regulating BRCA1-driven HRR function.

Thus, we speculate that preventing the formation of proper RAP80–BRCA1–PARP1 complexes and blocking BRCA1 PARsylation, e.g., with a suitable PARP1-inhibiting agent or by replacing endogenous BRCA1 with a non-PARsylatable mutant, will translate into a major breakdown in HRR control. Because HRR control is also a suppressor of radial and complex chromosomal rearrangements, this effect is likely to be accompanied by overt chromosomal instability (Fig. 6). Such an outcome would be expected in any proliferating cell, such as certain hematopoietic progenitor cells in the bone marrow. Sufficient chronic genome disorder could, in time, nurture elements of a neoplastic phenotype.

Multiple PARP inhibitors are being tested in clinical trials as a novel class of therapeutic agents. BRCA1- or BRCA2-deficient...
cancer cells are hypersensitive to PARP inhibitors due to their inability to repair PARP inhibitor-induced DNA damage or trapped PARP-DNA complexes in the absence of efficient HRR (69–72). Currently, PARP inhibitors are under clinical investigation for use in other cancers that synthesize fully functional BRCA1, such as ovarian cancers, either as a single agent or in combination with other therapeutic agents (73, 74).

However, our results suggest that the use of PARP inhibitors in a BRCA1-proficient background requires caution, because chronic hyper-recombination in conjunction with sporadic or therapeutic DNA damage may result in deleterious genomic instability in nontumor cells.

Given the value of HRR tuning in genome stability control, one wonders whether it also operates in breast cancer suppression, because BRCA1 PARylation defects are noted in some sporadic TNBC cell lines (Fig. 7A). If so, PARP1+RAP80-driven regulation of the amplitude of BRCA1 HRR function would be a physiologic process that, if defective, might be clinically relevant.

Recent studies suggest that certain mutations or polymorphisms in the RAP80, ABRA1, or MERIT40/NBA1 (another member of the RAP80 complex) genes are associated with increased susceptibility to breast and/or ovarian cancer (75–80). In addition, the genomic region containing the RAP80 gene is not infrequently lost in TNBCs, which commonly exhibit gross manifestations of genomic instability (81). RAP80 and/or ABRA1 expression was also suppressed in 6 of 17 of our PDx breast cancer models, of which 3 were TNBCs in origin (Fig. 7E). Finally, cells of RAP80 or ABRA1 knockout mice experience a breakdown in genome integrity control, and these mice are more cancer prone than WT controls (82–84). These observations, together with our findings, suggest that a deficiency in RAP80 complex function and/or BRCA1 PARylation contributes to the genomic instability that drives cancer development.

METHODS

For additional Methods, please see Supplementary Information.

Cell Culture

All cells were cultivated at 37°C in a humidified incubator in an atmosphere containing 10% CO₂, U2OS, HeLa, 293T, T98G, and MEF cells were grown in DMEM supplemented with 10% FBS. HeLa S3 cells were grown in Joklik’s Minimum Essential Medium (Sigma) supplemented with 7% newborn calf serum at 37°C. Mouse ES cells were grown in ES medium (Invitrogen) on either MEF feeder cells supplemented with 7% newborn calf serum at 37°C. Mouse ES cells were grown in DMEM supplemented with 10% FBS. HeLa reporter, were performed as described (85). Two versions of the I-SceI Recombination Assay were used in experiments. One detects LTGC events by forming blasticidin (BSD)-resistant colonies, whereas the other measures LTGC events by counting cells with red fluorescent protein (RFP) fluorescence. Briefly, for the STGC assay, cells were transfected with pCRBAsc (I-SceI) plasmid and collected 72 hours later. GFP-positive cell populations (i.e., STGC) were detected and measured by flow cytometry. For the LTGC assay, after pCRBAsc transfection, cells were either plated in 60-mm plates at 5 × 10⁵ cell per plate and then selected with 10 μg/ml BSD beginning 48 hours later for 12 days, or measured by flow cytometry for RFP-positive cells. In all experiments, a plasmid expressing DsRed was transfected in parallel to determine transfection efficiency. To determine plating efficiency, cells were plated in 60-mm plates at 5,000 cells/plate but were not selected with BSD. In the case of BRCA1-depleted and BRCA1-reconstituted cells, because their ability to form colonies was compromised, the rates of cell survival after BSD selection were determined using the CellTiter-Glo method (Promega) following the manufacturer’s protocol.

PARG Treatment

Immunoprecipitated proteins were eluted by incubating beads with elution buffer (0.1 mol/L Glycine, pH 2.5, 0.1 mol/L NaCl). The eluted protein-containing solution was diluted with 2X PARG reaction buffer (100 mmol/L KH₂PO₄, 100 mmol/L KCl, 0.2 mg/ml BSA, 0.2% Triton X-100). Recombinant PARG (Trevigen) was added to a final concentration of 10 ng/ml, and the reaction mixture was incubated at room temperature for 60 minutes.

PARP Inhibitor

The PARP inhibitors olaparib (AZD2281), veliparib (ABT-888), ISQ, and BMN-673 were dissolved in DMSO and stored at −20°C. When used in tissue culture experiments, each was further diluted in tissue culture medium. In most experiments, the final concentration of olaparib in the medium was 30 mmol/L, and control cells were incubated with medium containing the same concentration of the solvent, DMSO (final concentration: 0.003%).

Biotinylated-NAD Incorporation

HeLa cells growing in plates were washed twice with PBS and then incubated with PARP reaction buffer [56 mmol/L HEPES, pH = 8.0, 28 mmol/L KCl, 2 mmol/L MgCl₂, 0.01% digitonin, 12.5 μmol/L biotinylated-NAD (Trevigen), supplemented with 100 mmol/L ola-parib or 0.01% DMSO] for 30 minutes at 37°C. Cells were then collected and lysed in preheated denaturing lysis buffer [400 mmol/L NaCl, 0.5 mmol/L EDTA, 50 mmol/L Tris-HCl, pH 7.5, 0.5% NP-40, 70 mmol/L β-Mercaptoethanol, 1.5 mmol/L MgCl₂, 10% glycerol, 5 mmol/L N-Ethylmaleimide (NEM)], 1 μmol/L ADP-HPD (a PAR inhibitor) and protease inhibitors] and heated for 10 minutes at 95°C. After incubating for 30 minutes at 4°C, lysates were cleared by centrifugation and then incubated with Streptavidin M-280 Dynal beads (Invitrogen) to trap Biotin-containing proteins according to the manufacturer’s guidelines.

In Vitro ADP-Ribosylation Assay

Bead-bound GST-tagged BRCA1 fragments of defined sequence were incubated with 10 pmoles purified human PARP1 (Enzo; ALX-201-063-C020) or PARP3 (Enzo; ALX-201-252-C010) in reaction buffer [50 mmol/L Tris-HCl, pH 7.5, 4 mmol/L MgCl₂, 250 μmol/L DTT, 20 mmol/L NaCl, 100 μmol/L NAD, and activated DNA (Trevi-gen)] at room temperature for 20 minutes. For reactions containing Bio-NAD, 75 μmol/L NAD and 25 μmol/L Bio-NAD were combined and added in reaction buffer solution. Beads were then washed 3 times with washing buffer (55 mmol/L Tris-HCl, pH 7.5, 1 mmol/L EDTA, 200 mmol/L NaCl, 1 mmol/L DTT, 1% Triton X-100) to stop the reaction. Beads were washed once more with 50 mmol/L Tris-HCl, pH 8.0 before GST-tagged proteins were eluted and analyzed.
DNA Binding Assay

Oligonucleotides (sequences available upon request) were labeled using a Biotin 3’ End DNA Labeling kit following manufacturer’s instructions (Pierce/Thermo). They were then annealed to generate biotin-conjugated four-way junction DNA structures. GST-F3.7, although still bound to glutathione beads, was PARsylated in vitro by PARP1, as described above, or mock treated. After the reaction, beads were washed with GST-binding buffer (55 mmol/L Tris-HCl, pH 7.5, 1 mmol/L EDTA, 200 mmol/L NaCl, 1% Triton X-100, 1 mmol/L DTT, and protease inhibitors) four times before GST-F3.7 or GST was eluted. GST-F3.7 PARsylated by PARP1 or mock treated, or GST, treated similarly, was then incubated with biotinyl four-way junction DNA in DNA-binding buffer (10 mmol/L Tris-HCl, pH = 8.0, 60 mmol/L KCl, 20 μg/mL BSA, 0.1% Triton X-100, 400 μmol/L MgCl2) for 30 minutes at room temperature. Streptavidin M-280 Dynal beads (10 μL; Invitrogen) were then added to each reaction mixture and incubated at room temperature for 10 minutes. Supernatants containing unbound proteins were collected, and the beads were washed four times with DNA-binding buffer before being processed for further analyses.

For PARslylation-driven binding release assays, biotinyl four-way junction DNA-bound F3.7 on Streptavidin beads was incubated with PARP1 in PARP reaction buffer (see above), in the presence and absence of 100 nmol/L olaparib. After the reaction, the supernatant (containing any released protein) and beads (containing remaining bound protein) were collected and analyzed.

Chromosome Analysis

Cells were treated with indicated siRNA or drugs, or transfected with indicated cDNA for 48 hours and then exposed to 150 rad ionizing radiation. Colcemid (30 ng/mL) was added to culture 5 hours after IR, and cells were incubated for an additional 3 hours, collected, and then prepared for analysis of metaphase spreads. Spreads were stained with 4’,6-diamidino-2-phenylindole, dihydrochloride (DAPI).

PDX Breast Cancer Tumor Samples

PDX tumor models were established as described (5). Patient IDs were deidentified to protect confidentiality. Tumor samples were snap-frozen in liquid nitrogen immediately after surgery. Frozen tumor samples were pulverized using a prechilled metal pestle while remaining submerged in liquid nitrogen. Then the vials containing these pulverized samples were slowly removed from the liquid nitrogen bath. Liquid nitrogen submerged in liquid nitrogen. Then the vials containing these pulverized samples were pulverized using a prechilled metal pestle while remaining submerged in liquid nitrogen. Supernatants containing unbound proteins were collected, and the beads were washed four times with DNA-binding buffer before being processed for further analyses.

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis):

Y. Hu, S.B. Ficarro, K.J. Toomire, T. A. Xie, E. Lim, R. Scully

Writing, review, and/or revision of the manuscript:

Y. Hu, S.B. Ficarro, E. Lim, M.J. Eck, R. Scully, M. Brown, D.M. Livingston

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases):

Y. Hu, K.J. Toomire, S.A. Cao

Study supervision:

Y. Hu, D.M. Livingston

Other (performed mass spectrometry analyses under supervision of J.A. Marto):

Y. Hu, S.B. Ficarro

Acknowledgments

The authors thank Drs. Zhao-Qi Wang and Ya Wang for providing Parp1 knockout MEF cells; Dr. Andrea Richardson for providing human breast cancer samples; AstraZeneca/Kudos for providing a generous initial supply of olaparib; Drs. Guillaume Adelman and Jean-Bernard Lazaro and members of the Livingston group for numerous helpful discussions and technical advice; and Dr. Daniel Silver for providing some breast cancer cell lines.

Grant Support

This work was supported by grants from the NCI, the Breast Cancer Research Foundation, and the Susan G. Komen Foundation for the Cure (to D.M. Livingston), and by an NCI SPORE grant in breast cancer research to Dana-Farber/Harvard Cancer Center. Y. Hu was supported by a U.S. Department of Defense postdoctoral fellowship award (WB1XWH-09-1-0632).

Received November 19, 2013; revised September 10, 2014; accepted September 12, 2014; published OnlineFirst September 24, 2014.

REFERENCES

11. Yu X, Chen J. DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol Cell Biol 2004;24:9478-86.
33. Hassa PO, Hartiger MO. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci 2008;13:3046–82.
PARP1-Driven BRCA1 PARsylation Regulates HRR

PARP1-Driven Poly-ADP-Ribosylation Regulates BRCA1 Function in Homologous Recombination–Mediated DNA Repair

Cancer Discovery 2014;4:1430-1447. Published OnlineFirst September 24, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/2159-8290.CD-13-0891

Supplementary Material
Access the most recent supplemental material at:
http://cancerdiscovery.aacrjournals.org/content/suppl/2014/09/24/2159-8290.CD-13-0891.DC1

Cited articles
This article cites 85 articles, 38 of which you can access for free at:
http://cancerdiscovery.aacrjournals.org/content/4/12/1430.full#ref-list-1

Citing articles
This article has been cited by 11 HighWire-hosted articles. Access the articles at:
http://cancerdiscovery.aacrjournals.org/content/4/12/1430.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/4/12/1430.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.