IN THIS ISSUE
Highlighted research articles 621

NEWS IN BRIEF
Important news stories affecting the community 624

Q&A: Brian Kennedy on Aging and Cancer 627

RESEARCH ARTICLES
New Nanomedicines May Better Target Tumors 628

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 629

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org

VIEWS
In The Spotlight
Second-Generation ALK Inhibitors: Filling the Non"MET" Gap 634
S.S. Ramalingam and F.R. Khuri
See article, p. 662

Soil Amendments That Slow Cancer Growth 637
C.M. Isacke and M.H. Barcellos-Hoff
See article, p. 716

VEGFA Genomic Amplification Tailors Treatment of HCCs with Sorafenib 640
X. Luo and G.-S. Feng
See article, p. 730

EML4–ALK Fusions: Propelling Cancer but Creating Exploitable Chaperone Dependence 642
P. Workman and R. van Montfort

In Focus
Surviving Metabolic Stress: Of Mice (Squirrels) and Men 646
W.N. Hait, M. Versele, and J.-M. Yang

REVIEW
Blood-Based Analyses of Cancer: Circulating Tumor Cells and Circulating Tumor DNA 650
D.A. Haber and V.E. Velculescu

The ALK Inhibitor Ceritinib Overcomes Crizotinib Resistance in Non–Small Cell Lung Cancer 662

Précis: Ceritinib, a next-generation ALK inhibitor, has potent activity in preclinical models of crizotinib-naïve and crizotinib-resistant ALK-rearranged non–small cell lung cancer.
See commentary, p. 634

Immune Cell–Poor Melanomas Benefit from PD-1 Blockade after Targeted Type I IFN Activation 674

Précis: Type I IFN–associated inflammatory pathway activation combined with antibody blockade of the T-cell immunoinhibitory receptor PD-1 improves immune surveillance of melanomas.

Inflammation-Induced NFATc1–STAT3 Transcription Complex Promotes Pancreatic Cancer Initiation by Kras6120 688

Précis: Type I IFN–associated inflammatory pathway activation combined with antibody blockade of the T-cell immunoinhibitory receptor PD-1 improves immune surveillance of melanomas.

VEGFA Genomic Amplification Tailors Treatment of HCCs with Sorafenib 640
X. Luo and G.-S. Feng
See article, p. 730

EML4–ALK Fusions: Propelling Cancer but Creating Exploitable Chaperone Dependence 642
P. Workman and R. van Montfort

In Focus
Surviving Metabolic Stress: Of Mice (Squirrels) and Men 646
W.N. Hait, M. Versele, and J.-M. Yang

Précis: NFATC1 expression is induced by inflammation and cooperates with KRAS in pancreatic carcinogenesis by forming complexes with STAT3 at enhancer regions that regulate oncogenic gene networks.
Epithelial-to-Mesenchymal Transition Activates PERK–eIF2α and Sensitizes Cells to Endoplasmic Reticulum Stress 702

Précis: Elevated ECM synthesis and secretion activates the PERK arm of the UPR and renders cells that have undergone EMT vulnerable to ER stress-inducing agents.

p38MAPK Plays a Crucial Role in Stromal-Mediated Tumorigenesis 716

Précis: The secretory phenotype of cancer-associated fibroblasts that promotes tumor growth is post-transcriptionally controlled by p38MAPK.

See commentary, p. 637

AC icon indicates Author Choice
For more information please visit http://www.aacrjournals.org

ON THE COVER

Friboulet and colleagues report that ceritinib, a next-generation ALK inhibitor that is more selective and potent than crizotinib, is active in preclinical models of both crizotinib-naïve and crizotinib-resistant non-small cell lung cancer (NSCLC). Ceritinib retained activity against the most common crizotinib-resistant ALK mutants, although some secondary ALK mutations did confer resistance to both crizotinib and ceritinib. Structural analyses provided a mechanistic basis for these findings, as the most common secondary ALK mutations that inhibit binding of crizotinib are not predicted to impair ceritinib binding, but other mutations, which the authors have identified in patients with acquired resistance to ceritinib, are predicted to reduce ceritinib binding through steric hindrance or conformational changes of the ALK catalytic domain. For details, please see the article by Friboulet and colleagues on page 662.

Human and Mouse VEGFA-Amplified Hepatocellular Carcinomas Are Highly Sensitive to Sorafenib Treatment 730

Précis: VEGFA amplifications frequently occur in mouse and human hepatocellular carcinomas and drive dependence on VEGFA signaling via manipulation of the tumor microenvironment.
See commentary, p. 640