IN THIS ISSUE
Highlighted research articles 745

NEWS IN BRIEF
Important news stories affecting the community 750

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 755

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

VIEWS
In The Spotlight

SPSB1 May Have MET Its Match during Breast Cancer Recurrence 760
Y. Qin and S.S. McAllister
See article, p. 790

BluepRINT for Moderate-to-Low Penetration Cancer Susceptibility Genes Needed: Breast Cancer and Beyond 762
J. Ngeow and C. Eng
See article, p. 804

A Little pRB Can Lead to Big Problems 764
P.W. Hinds
See article, p. 840

RESEARCH BRIEFS
Autophagy Inhibition Improves Chemosensitivity in BRAFV600E Brain Tumors 773

Obligate Progression Precedes Lung Adenocarcinoma Dissemination 781

RESEARCH ARTICLES
SPSB1 Promotes Breast Cancer Recurrence by Potentiating c-MET Signaling 790

Rare Mutations in RINT1 Predispose Carriers to Breast and Lynch Syndrome-Spectrum Cancers ... 804

Targeting Mitochondrial Metabolism by Inhibiting Autophagy in BRAF-Driven Cancers 766
A.M. Strohecker and E. White

Precis: BRAFV600E-positive pediatric central nervous system tumor cells are autophagy-dependent and can be effectively targeted with combined chloroquine and vemurafenib therapy.

Precis: Tumor-cell dissemination is a rate-limiting step in lung cancer metastasis that requires genetic alterations that can be facilitated by p53 loss and is characterized by downregulation of Nkx2-1.

Precis: Upregulation of SPSB1 enhances the survival of residual tumor cells and mediates tumor recurrence by activating c-MET signaling in aggressive breast cancer subtypes. See commentary, p. 760

Precis: Rare variants in RINT1 are associated with increased risk for breast cancer as well as a spectrum of cancers that are associated with DNA mismatch repair defects. See commentary, p. 762

See article, p. 790

See article, p. 804

See article, p. 762

See article, p. 840
Mulcahy Levy and colleagues report that autophagy is increased in BRAFV600E-positive pediatric central nervous system (CNS) tumors, suggesting that BRAF-mutant CNS tumors may be dependent on autophagy. Indeed, inhibition of autophagy was cytotoxic to BRAFV600E-positive CNS tumor cells, and the autophagy inhibitor chloroquine showed synergistic activity with the BRAF inhibitor vemurafenib in BRAF-mutant CNS tumor cells. The addition of chloroquine to vemurafenib overcame vemurafenib resistance in primary BRAF-mutant pleomorphic xanthoastrocytoma cells, and combined chloroquine and vemurafenib rapidly improved symptoms and led to durable disease stabilization in a patient with vemurafenib-refractory BRAFV600E-positive brainstem ganglioglioma. These findings provide a rationale for combining autophagy inhibitors with BRAF-targeted therapy in patients with BRAF-mutant CNS tumors. For details, please see the article by Mulcahy Levy and colleagues on page 773.