Autophagy Inhibition Improves Chemosensitivity in BRAFV600E Brain Tumors..........................773
Précis: BRAFV600E-positive pediatric central nervous system tumor cells are autophagy-dependent and can be effectively targeted with combined chloroquine and vemurafenib therapy.

Obligate Progression Precedes Lung Adenocarcinoma Dissemination781
Précis: Tumor-cell dissemination is a rate-limiting step in lung cancer metastasis that requires genetic alterations that can be facilitated by p53 loss and is characterized by downregulation of Nkx2-1.

SPSB1 Promotes Breast Cancer Recurrence by Potentiating c-MET Signaling790
Précis: Upregulation of SPSB1 enhances the survival of residual tumor cells and mediates tumor recurrence by activating c-MET signaling in aggressive breast cancer subtypes.
See commentary, p. 760

SPSB1 May Have MET Its Match during Breast Cancer Recurrence760
Y. Qin and S.S. McAllister
See article, p. 790

BluepRINT for Moderate-to-Low Penetration Cancer Susceptibility Genes Needed: Breast Cancer and Beyond762
J. Ngeow and C. Eng
See article, p. 804

A Little pRB Can Lead to Big Problems764
P.W. Hinds
See article, p. 840

Targeting Mitochondrial Metabolism by Inhibiting Autophagy in BRAF-Driven Cancers766
A.M. Strohecker and E. White

See article, p. 804

MINI REVIEW

Rare Mutations in RINT1 Predispose Carriers to Breast and Lynch Syndrome-Spectrum Cancers 804
Précis: Rare variants in RINT1 are associated with increased risk for breast cancer as well as a spectrum of cancers that are associated with DNA mismatch repair defects.
See commentary, p. 762
Mulcahy Levy and colleagues report that autophagy is increased in BRAFV600E-positive pediatric central nervous system (CNS) tumors, suggesting that BRAF-mutant CNS tumors may be dependent on autophagy. Indeed, inhibition of autophagy was cytotoxic to BRAFV600E-positive CNS tumor cells, and the autophagy inhibitor chloroquine showed synergistic activity with the BRAF inhibitor vemurafenib in BRAF-mutant CNS tumor cells. The addition of chloroquine to vemurafenib overcame vemurafenib resistance in primary BRAF-mutant pleomorphic xanthoastrocytoma cells, and combined chloroquine and vemurafenib rapidly improved symptoms and led to durable disease stabilization in a patient with vemurafenib-refractory BRAFV600E-positive brainstem ganglioglioma. These findings provide a rationale for combining autophagy inhibitors with BRAF-targeted therapy in patients with BRAF-mutant CNS tumors. For details, please see the article by Mulcahy Levy and colleagues on page 773.

Précis: BRAF-mutant melanoma can be classified into two transcriptional cell states that are defined by MITF and NF-κB activity and are correlated with intrinsic resistance to MAPK inhibition.

Précis: Zaprinast is an inhibitor of glutaminase that reduces levels of the oncometabolite 2-hydroxyglutarate and shows activity in IDH-mutant and glutamine-addicted cancer cells.

Précis: Loss of one RB1 allele disrupts a pRB–E2F1–condensin II complex that regulates DNA replication and is sufficient to induce replication stress, chromosome structure defects, and aneuploidy.

ON THE COVER

Mulcahy Levy and colleagues report that autophagy is increased in BRAFV600E-positive pediatric central nervous system (CNS) tumors, suggesting that BRAF-mutant CNS tumors may be dependent on autophagy. Indeed, inhibition of autophagy was cytotoxic to BRAFV600E-positive CNS tumor cells, and the autophagy inhibitor chloroquine showed synergistic activity with the BRAF inhibitor vemurafenib in BRAF-mutant CNS tumor cells. The addition of chloroquine to vemurafenib overcame vemurafenib resistance in primary BRAF-mutant pleomorphic xanthoastrocytoma cells, and combined chloroquine and vemurafenib rapidly improved symptoms and led to durable disease stabilization in a patient with vemurafenib-refractory BRAFV600E-positive brainstem ganglioglioma. These findings provide a rationale for combining autophagy inhibitors with BRAF-targeted therapy in patients with BRAF-mutant CNS tumors. For details, please see the article by Mulcahy Levy and colleagues on page 773.

Preclinical studies suggest that BRAFV600E-positive pediatric central nervous system (CNS) tumors may be dependent on autophagy. Indeed, inhibition of autophagy was cytotoxic to BRAFV600E-positive CNS tumor cells, and the autophagy inhibitor chloroquine showed synergistic activity with the BRAF inhibitor vemurafenib. The addition of chloroquine to vemurafenib overcame vemurafenib resistance in primary BRAF-mutant pleomorphic xanthoastrocytoma cells, and combined chloroquine and vemurafenib rapidly improved symptoms and led to durable disease stabilization in a patient with vemurafenib-refractory BRAFV600E-positive brainstem ganglioglioma. These findings provide a rationale for combining autophagy inhibitors with BRAF-targeted therapy in patients with BRAF-mutant CNS tumors. For details, please see the article by Mulcahy Levy and colleagues on page 773.
Updated version

Access the most recent version of this article at:
http://cancerdiscovery.aacrjournals.org/content/4/7

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>