IN THIS ISSUE
Highlighted research articles

NEWS IN BRIEF
Important news stories affecting the community

MINI REVIEW
TRKing Down an Old Oncogene in a New Era of Targeted Therapy
A. Vaishnavi, A.T. Le, and R.C. Doebele

RESEARCH BRIEFS
Real-Time Intravital Imaging Establishes Tumor-Associated Macrophages as the Extraskeletal Target of Bisphosphonate Action in Cancer

Preçis: Bisphosphonates bind granular microcalcifications and are internalized by tumor-associated macrophages in breast tumors. See commentary, p. 14

The Vigorous Immune Microenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints

Preçis:Mismatch repair–deficient colorectal cancers counteract Th1/CTL immune responses by upregulating immune checkpoint proteins, including PD-1 and PD-L1. See commentary, p. 16

Mutant KRAS–Induced Expression of ICAM-1 in Pancreatic Acinar Cells Causes Attraction of Macrophages to Expedite the Formation of Precancerous Lesions

Preçis: Crosstalk between pancreatic acinar cells and proinflammatory macrophages promotes initiation of acinar-to-ductal metaplasia via KRASG12D–induced expression of the macrophage chemoattractant ICAM1.
Prospective Blinded Study of BRAFV600E Mutation Detection in Cell-Free DNA of Patients with Systemic Histiocytic Disorders

Précis: Cell-free DNA testing using plasma and urine samples may be a reliable, noninvasive method to identify mutations and monitor treatment response in histiocytic disorders.

Measuring Residual Estrogen Receptor Availability during Fulvestrant Therapy in Patients with Metastatic Breast Cancer

M. van Kruchten, E.G. de Vries, A.W. Glaudemans, M.C. van Lanschot, M. van Faassen, I.P. Kema, M. Brown, C.P. Schröder, E.F. de Vries, and G.A. Hospers

Précis: Decreased [18F]fluoroestradiol uptake visualized by PET/CT provides a measure of tumor ER availability and correlates with fulvestrant treatment outcome in patients with metastatic breast cancer.

ON THE COVER

Hyman, Diamond, and colleagues carried out a prospective, blinded study to quantitatively detect the BRAFV600E mutation in circulating tumor cell-free DNA (cfDNA) from the urine and plasma of patients with Langerhans cell histiocytosis or Erdheim-Chester disease. Urinary cfDNA analysis defined the BRAF genotype of all 30 patients and was 100% concordant with tissue genotypes among treatment-naive patients. Furthermore, serial urinary cfDNA analyses in patients treated with a BRAF inhibitor or immunomodulatory therapy showed a progressive decrease in BRAFV600E allele burden, consistent with radiographic evidence of disease improvement. Tissue and cfDNA genotyping also identified a previously unreported somatic KRASG12S mutation in a BRAF wild-type patient. These data suggest cfDNA testing as a reliable, noninvasive method to detect BRAFV600E mutations and monitor response to therapy in histiocytic disorders. For details, please see the article by Hyman, Diamond, and colleagues on page 64.

Induction of Telomere Dysfunction Mediated by the Telomerase Substrate Precursor 6-Thio-2'-Deoxyguanosine

I. Mender, S. Gryaznov, Z.G. Dikmen, W.E. Wright, and J.W. Shay

Précis: 6-thio-2'-deoxyguanosine is a precursor of a telomerase substrate that is incorporated into newly synthesized telomeres, leading to telomere dysfunction and death in telomerase-expressing cells.

See commentary, p. 19
CANCER DISCOVERY

5 (1)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/5/1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>