IN THIS ISSUE
Highlighted research articles 1

NEWS IN BRIEF
Important news stories affecting the community 4

NEWS IN DEPTH
Cancer-Killing CAR Therapies Gain Speed 7
In Search of Exceptional Responders 8

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 9

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

VIEWS
In The Spotlight
Addressing the Controversy: Do Bisphosphonates Directly Affect Primary Tumors? 14
J.A. Sterling
See article, p. 35

The Microsatellite Instable Subset of Colorectal Cancer Is a Particularly Good Candidate for Checkpoint Blockade Immunotherapy ... 16
Y. Xiao and G.J. Freeman
See article, p. 43

Turning Telomerase into a Jekyll and Hyde Case? 19
R.J. Wellinger
See article, p. 82

In Focus
How Does Multistep Tumorigenesis Really Proceed? 22
C.L. Chaffer and R.A. Weinberg

MINI REVIEW
TRKing Down an Old Oncogene in a New Era of Targeted Therapy 25
A. Vaishnavi, A.T. Le, and R.C. Doebele

RESEARCH BRIEFS
Real-Time Intravital Imaging Establishes Tumor-Associated Macrophages as the Extraskeletal Target of Bisphosphonate Action in Cancer 35
Précis: Bisphosphonates bind granular microcalcifications and are internalized by tumor-associated macrophages in breast tumors.
See commentary, p. 14

The Vigorous Immune Microenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints 43
Précis:Mismatch repair–deficient colorectal cancers counteract Th1/CTL immune responses by upregulating immune checkpoint proteins, including PD-1 and PD-L1.
See commentary, p. 16

Mutant KRAS–Induced Expression of ICAM-1 in Pancreatic Acinar Cells Causes Attraction of Macrophages to Expedite the Formation of Precancerous Lesions 52
Précis: Crosstalk between pancreatic acinar cells and proinflammatory macrophages promotes initiation of acinar-to-ductal metaplasia via KRAS(12)-induced expression of the macrophage chemotactant ICAM1.

In The Spotlight
Addressing the Controversy: Do Bisphosphonates Directly Affect Primary Tumors? 14
J.A. Sterling
See article, p. 35

The Microsatellite Instable Subset of Colorectal Cancer Is a Particularly Good Candidate for Checkpoint Blockade Immunotherapy ... 16
Y. Xiao and G.J. Freeman
See article, p. 43

Turning Telomerase into a Jekyll and Hyde Case? 19
R.J. Wellinger
See article, p. 82

In Focus
How Does Multistep Tumorigenesis Really Proceed? 22
C.L. Chaffer and R.A. Weinberg

MINI REVIEW
TRKing Down an Old Oncogene in a New Era of Targeted Therapy 25
A. Vaishnavi, A.T. Le, and R.C. Doebele

RESEARCH BRIEFS
Real-Time Intravital Imaging Establishes Tumor-Associated Macrophages as the Extraskeletal Target of Bisphosphonate Action in Cancer 35
Précis: Bisphosphonates bind granular microcalcifications and are internalized by tumor-associated macrophages in breast tumors.
See commentary, p. 14

The Vigorous Immune Microenvironment of Microsatellite Instable Colon Cancer Is Balanced by Multiple Counter-Inhibitory Checkpoints 43
Précis:Mismatch repair–deficient colorectal cancers counteract Th1/CTL immune responses by upregulating immune checkpoint proteins, including PD-1 and PD-L1.
See commentary, p. 16

Mutant KRAS–Induced Expression of ICAM-1 in Pancreatic Acinar Cells Causes Attraction of Macrophages to Expedite the Formation of Precancerous Lesions 52
Précis: Crosstalk between pancreatic acinar cells and proinflammatory macrophages promotes initiation of acinar-to-ductal metaplasia via KRAS(12)-induced expression of the macrophage chemotactant ICAM1.
Prospective Blinded Study of \(\text{BRAF}^{V600E} \) Mutation Detection in Cell-Free DNA of Patients with Systemic Histiocytic Disorders

Précis: Cell-free DNA testing using plasma and urine samples may be a reliable, noninvasive method to identify mutations and monitor treatment response in histiocytic disorders.

Induction of Telomere Dysfunction Mediated by the Telomerase Substrate Precursor 6-Thio-2'-Deoxyguanosine

I. Mender, S. Gryaznov, Z.G. Dikmen, W.E. Wright, and J.W. Shay

Précis: 6-thio-2'-deoxyguanosine is a precursor of a telomerase substrate that is incorporated into newly synthesized telomeres, leading to telomere dysfunction and death in telomerase-expressing cells.

See commentary, p. 19

Measuring Residual Estrogen Receptor Availability during Fulvestrant Therapy in Patients with Metastatic Breast Cancer

M. van Kruchten, E.G. de Vries, A.W. Glaudemans, M.C. van Lanschot, M. van Faassen, I.P. Kema, M. Brown, C.P. Schröder, E.F. de Vries, and G.A. Hospers

Précis: Decreased [\(^{18}\)F]fluoroestradiol uptake visualized by PET/CT provides a measure of tumor ER availability and correlates with fulvestrant treatment outcome in patients with metastatic breast cancer.

ON THE COVER

Hyman, Diamond, and colleagues carried out a prospective, blinded study to quantitatively detect the \(\text{BRAF}^{V600E} \) mutation in circulating tumor cell-free DNA (cfDNA) from the urine and plasma of patients with Langerhans cell histiocytosis or Erdheim-Chester disease. Urinary cfDNA analysis defined the \(\text{BRAF} \) genotype of all 30 patients and was 100% concordant with tissue genotypes among treatment-naïve patients. Furthermore, serial urinary cfDNA analyses in patients treated with a BRAF inhibitor or immunomodulatory therapy showed a progressive decrease in \(\text{BRAF}^{V600E} \) allele burden, consistent with radiographic evidence of disease improvement. Tissue and cfDNA genotyping also identified a previously unreported somatic \(\text{KRAS}^{G12S} \) mutation in a \(\text{BRAF} \) wild-type patient. These data suggest cfDNA testing as a reliable, noninvasive method to detect \(\text{BRAF}^{V600E} \) mutations and monitor response to therapy in histiocytic disorders. For details, please see the article by Hyman, Diamond, and colleagues on page 64.