Oncogenic TRK fusions induce cancer cell proliferation and engage critical cancer-related downstream signaling pathways. These TRK fusions occur rarely, but in a diverse spectrum of tumor histologies. LOXO-101 is an orally administered inhibitor of the TRK kinase and is highly selective only for the TRK family of receptors. Preclinical models of LOXO-101 using TRK-fusion–bearing human-derived cancer cell lines demonstrate inhibition of the fusion oncoprotein and cellular proliferation in vitro, and tumor growth in vivo. The tumor of a 41-year-old woman with soft-tissue sarcoma metastatic to the lung was found to harbor an LMNA–NTRK1 gene fusion encoding a functional LMNA–TRKA fusion oncoprotein as determined by an in situ proximity ligation assay. In a phase I study of LOXO-101 (ClinicalTrials.gov no. NCT02122913), this patient's tumors underwent rapid and substantial tumor regression, with an accompanying improvement in pulmonary dyspnea, oxygen saturation, and plasma tumor markers.

SIGNIFICANCE: TRK fusions have been deemed putative oncogenic drivers, but their clinical significance remained unclear. A patient with a metastatic soft-tissue sarcoma with an LMNA–NTRK1 fusion had rapid and substantial tumor regression with a novel, highly selective TRK inhibitor, LOXO-101, providing the first clinical evidence of benefit from inhibiting TRK fusions. Cancer Discov; 5(10); 1049–57. © 2015 AACR.
TRK Fusions Are Oncogenic Drivers That Are Inhibited by LOXO-101

We and others have previously demonstrated that cancer cells harboring oncogenic TRK can be inhibited in vitro and in vivo by drugs that target the TRK kinase family (7, 9). To demonstrate activity of LOXO-101 in preclinical models harboring different variants of TRK oncogenes, we performed proliferation assays in three cell line models harboring TRK gene fusions: CUTO-3.29 is derived from a patient with lung adenocarcinoma harboring the MPRIP–NTRK1 gene fusion; the KM12 cell line is a colorectal cancer cell line harboring the TPM3–NTRK1 fusion (7); and the MO-91 cell line is derived from an acute myeloid leukemia patient harboring the ETV6–NTRK3 fusion (10). Measurement of proliferation following treatment with LOXO-101 demonstrated a dose-dependent inhibition of cell proliferation in all three cell lines (Fig. 1A–C). The IC_{50} was less than 100 nmol/L for CUTO-3.29 (Fig. 1A) and less than 10 nmol/L for KM12 (Fig. 1B) and MO-91 (Fig. 1C), consistent with the known potency of this drug for the TRK kinase family. Consistent with the inhibition of cellular proliferation, we also observed inhibition of phosphorylation of the MPRIP–TRKA oncoprotein and ERLK1/2 in CUTO-3.29 cells (Fig. 1D), inhibition of TPM3–TRKA, pAKT, and pERK1/2 in KM12 cells (Fig. 1E), and inhibition of the TEL–TRKC oncoprotein (encoded by ETV6–NTRK3), pAKT, and pERK1/2 in MO-91 cells using low doses of LOXO-101 (Fig. 1F). pAKT was not inhibited in the CUTO-3.29 cells by LOXO-101, suggesting that AKT signaling is not TRK-dependent in this tumor.

We next determined whether LOXO-101 could inhibit tumor growth in vivo. Athymic nude mice injected with KM12 cells were treated with LOXO-101 orally daily for 2 weeks (Fig. 1G). Dose-dependent tumor inhibition was observed, demonstrating the ability of this selective compound to inhibit tumor growth in vivo. Together, these and previously published results indicate that TRK fusions are constitutively activated, regulate critical downstream signaling pathways, such as MAPK and AKT, and are inhibited by a highly specific TRK inhibitor.

Initial Patient Presentation and Characterization of the Sarcoma Tumor Sample

In September 2014, a 41-year-old woman presented with a firm mass in her left groin. Initial imaging confirmed a 10-cm mass within the musculature of the anterior thigh; open biopsy revealed an undifferentiated sarcoma. Initial staging scans demonstrated multiple bilateral 4- to 13-mm pulmonary nodules consistent with metastatic disease.

The patient’s diagnostic, open tumor biopsy was tested using the FoundationOneHeme panel (Foundation Medicine). This multitarget comprehensive genomic profiling (CGP) assay using DNA and RNA sequencing of hundreds of cancer-related genes demonstrated the presence of a gene fusion encoding exons 1 to 2 of the lamin A/C gene (LMNA) and exons 11 to 17 of the NTRK1 gene, resulting in the LMNA–NTRK1 fusion gene (Fig. 2A). CGP also showed the loss of the tumor suppressor CDKN2A/B (not shown), but no other known oncogenic mutations.

Subsequently, a break-apart FISH assay performed on the patient’s tumor sample exhibited a predominantly single 3′ NTRK1 (red fluorescence signal) pattern in 64% of tumor nuclei, consistent with a genomic alteration involving the NTRK1 gene locus, most likely secondary to a genomic deletion between the two genes given the location and orientation of both LMNA and NTRK1 on the large arm of chromosome 1 (Fig. 2B). mRNA expression of the LMNA–NTRK1 fusion transcript from the chromosomal deletion was confirmed by RT-PCR and sequencing (Fig. 2C).

In order to assess both protein expression and functional activity of the fusion oncoprotein, we applied a proximity ligation assay (PLA) to the patient’s tumor sample. PLAs are unique because they can detect functional signaling complexes...
Clinical Response in NTRK-Fusion Sarcoma

Figure 1. LOXO-101 inhibition of cancer cells harboring oncogenic TRK. A–C, dose-dependent inhibition with LOXO-101 is demonstrated in three cancer cell line models of oncogenic TRK. CUTO-3.29 lung adenocarcinoma with MPRIP–NTRK1 (A), KM12 colorectal cancer with TPM3–NTRK1 (B), and MO-91 acute myeloid leukemia with ETV6–NTRK3 (C) cell lines were treated with a dose range of LOXO-101, and cellular proliferation was assayed by the MTS assay. The cellular IC50 was \(\sim 59.4 \pm 2.2\) nmol/L for CUTO-3.29; 3.5 \(\pm 0.7\) nmol/L for KM12; and 1.0 \(\pm 0.05\) nmol/L for MO-91.

D–F, target inhibition and downstream signaling following LOXO-101 treatment in cancer cell line models of oncogenic TRK. POC, percent of control. D, LOXO-101 inhibits phosphorylation of Y496 of the MPRIP–TRKA kinase and phosphorylation of T202/Y204 of ERK1/2 in CUTO-3.29 cells. E, LOXO-101 inhibits phosphorylation of Y496 of TPM3–TRKA kinase and downstream phosphorylation of ERK1/2 and S473 AKT in KM12 cells. F, LOXO-101 inhibits phosphorylation of TEL-TRKC kinase and ERK1/2 and AKT phosphorylation in MO-91 cells. Cells were treated for 2 hours with the indicated doses of LOXO-101 or DMSO alone, and cell lysates were analyzed using the indicated antibodies except for MO-91 cells, which were treated for 2 hours with 100 nmol/L of LOXO-101 or DMSO alone, and cell lysates were immunoprecipitated with an anti-TRK antibody followed by immunoblot analysis with the indicated antibodies.

G, LOXO-101 inhibits tumor growth in a KM12 colorectal xenograft model. Percent changes from baseline tumor volume in nude mice (\(n = 10\)/group) injected subcutaneously with KM12 cells and treated with diluent (control), 60 mg/kg/dose, or 200 mg/kg/dose daily for 14 days are shown. \(P\) values for comparisons between the indicated treatment group and the control group are indicated as *, \(P < 0.05\) and **, \(P < 0.01\).

Figure 1. LOXO-101 inhibition of cancer cells harboring oncogenic TRK. A–C, dose-dependent inhibition with LOXO-101 is demonstrated in three cancer cell line models of oncogenic TRK. CUTO-3.29 lung adenocarcinoma with MPRIP–NTRK1 (A), KM12 colorectal cancer with TPM3–NTRK1 (B), and MO-91 acute myeloid leukemia with ETV6–NTRK3 (C) cell lines were treated with a dose range of LOXO-101, and cellular proliferation was assayed by the MTS assay. The cellular IC50 was \(\sim 59.4 \pm 2.2\) nmol/L for CUTO-3.29; 3.5 \(\pm 0.7\) nmol/L for KM12; and 1.0 \(\pm 0.05\) nmol/L for MO-91. D–F, target inhibition and downstream signaling following LOXO-101 treatment in cancer cell line models of oncogenic TRK. POC, percent of control. D, LOXO-101 inhibits phosphorylation of Y496 of the MPRIP–TRKA kinase and phosphorylation of T202/Y204 of ERK1/2 in CUTO-3.29 cells. E, LOXO-101 inhibits phosphorylation of Y496 of TPM3–TRKA kinase and downstream phosphorylation of ERK1/2 and S473 AKT in KM12 cells. F, LOXO-101 inhibits phosphorylation of TEL–TRKC kinase and ERK1/2 and AKT phosphorylation in MO-91 cells. Cells were treated for 2 hours with the indicated doses of LOXO-101 or DMSO alone, and cell lysates were analyzed using the indicated antibodies except for MO-91 cells, which were treated for 2 hours with 100 nmol/L of LOXO-101 or DMSO alone, and cell lysates were immunoprecipitated with an anti-TRK antibody followed by immunoblot analysis with the indicated antibodies. G, LOXO-101 inhibits tumor growth in a KM12 colorectal xenograft model. Percent changes from baseline tumor volume in nude mice (\(n = 10\)/group) injected subcutaneously with KM12 cells and treated with diluent (control), 60 mg/kg/dose, or 200 mg/kg/dose daily for 14 days are shown. \(P\) values for comparisons between the indicated treatment group and the control group are indicated as *, \(P < 0.05\) and **, \(P < 0.01\).

Figure 1. LOXO-101 inhibition of cancer cells harboring oncogenic TRK. A–C, dose-dependent inhibition with LOXO-101 is demonstrated in three cancer cell line models of oncogenic TRK. CUTO-3.29 lung adenocarcinoma with MPRIP–NTRK1 (A), KM12 colorectal cancer with TPM3–NTRK1 (B), and MO-91 acute myeloid leukemia with ETV6–NTRK3 (C) cell lines were treated with a dose range of LOXO-101, and cellular proliferation was assayed by the MTS assay. The cellular IC50 was \(\sim 59.4 \pm 2.2\) nmol/L for CUTO-3.29; 3.5 \(\pm 0.7\) nmol/L for KM12; and 1.0 \(\pm 0.05\) nmol/L for MO-91. D–F, target inhibition and downstream signaling following LOXO-101 treatment in cancer cell line models of oncogenic TRK. POC, percent of control. D, LOXO-101 inhibits phosphorylation of Y496 of the MPRIP–TRKA kinase and phosphorylation of T202/Y204 of ERK1/2 in CUTO-3.29 cells. E, LOXO-101 inhibits phosphorylation of Y496 of TPM3–TRKA kinase and downstream phosphorylation of ERK1/2 and S473 AKT in KM12 cells. F, LOXO-101 inhibits phosphorylation of TEL–TRKC kinase and ERK1/2 and AKT phosphorylation in MO-91 cells. Cells were treated for 2 hours with the indicated doses of LOXO-101 or DMSO alone, and cell lysates were analyzed using the indicated antibodies except for MO-91 cells, which were treated for 2 hours with 100 nmol/L of LOXO-101 or DMSO alone, and cell lysates were immunoprecipitated with an anti-TRK antibody followed by immunoblot analysis with the indicated antibodies. G, LOXO-101 inhibits tumor growth in a KM12 colorectal xenograft model. Percent changes from baseline tumor volume in nude mice (\(n = 10\)/group) injected subcutaneously with KM12 cells and treated with diluent (control), 60 mg/kg/dose, or 200 mg/kg/dose daily for 14 days are shown. \(P\) values for comparisons between the indicated treatment group and the control group are indicated as *, \(P < 0.05\) and **, \(P < 0.01\).

between a kinase and one of its adaptors in situ (11). In this assay, we measured TRKA complexed with its preferred adaptor, SHC1, which binds to Y496 in the TRKA kinase domain (Supplementary Fig. S2; ref. 12). We have validated this assay in both human cell lines and formalin-fixed patient-derived tumor xenograft (PDX) tumor samples (Supplementary Fig. S3). RNAi knockdown of NTRK1 disrupts TRKA–SHC1 complexes in the CUTO-3 cell line harboring the MPRIP–NTRK1 fusion gene (Supplementary Fig. S3A–S3C), as does inhibition with the pan-TRK selective inhibitor LOXO-101 (Supplementary Fig. S3D and S3E). The TRK PLA detects functional signaling complexes in a formalin-fixed, paraffin-embedded (FFPE) tumor sample from a PDX, CULC001, harboring the MPRIP–NTRK1 gene fusion but not the PDX CULC002, which does not harbor a known oncogenic driver mutation (Supplementary Fig. S3F and S3G). The TRK–SHC PLA can also detect non-oncogenic signaling complexes as shown by a positive signal in a region of peripheral
Figure 2. Molecular characterization of tumor sample. Multimodality testing demonstrating genomic, transcriptional, and functional (protein) evidence of LMNA–NTRK1 gene fusion in the patient’s tumor sample. A, the LMNA–NTRK1 gene fusion was identified in the patient’s tumor sample by the FoundationOneHeme panel, joining the first two exons of LMNA (NM_170707) with exons 11 to 17 of NTRK1 (NM_002529). B, NTRK1 break-apart FISH was performed as previously described (7) and demonstrated both paired green (5′ NTRK1) and red (3′ NTRK1) signals corresponding to the normal NTRK1 gene (yellow arrow). Isolated red signals (red arrows) are observed in tumor nuclei (stained blue with DAPI), indicative of a chromosomal deletion leading to an NTRK1 gene fusion. C, chromatogram of DNA sequencing of RT-PCR product using LMNA (5′) and NTRK1 (3′) primers indicating the fusion breakpoint between exon 2 of LMNA and exon 11 of NTRK1. D, TRK–SHC1 proximity ligation assay demonstrates robust signaling in the tumor cells but weak signaling in the thick-walled blood vessel. Nuclei are stained with DAPI (blue), and the red signals represent a positive PLA indicative of TRKA–SHC1 protein complexes. A blood vessel is indicated within the partial ellipse (dotted white line). E, adjacent tumor tissue section stained with hematoxylin and eosin, indicating a thick-walled blood vessel (within partial ellipse indicated by dotted white line) and flanking tumor nuclei.

The presence of the LMNA–NTRK1 fusion detected by a FoundationOneHeme assay and then validated by FISH and RT-PCR combined with the evidence of TRKA protein expression and functional activity of the TRK pathway in the patient’s tumor sample suggested that the patient has a TRK-driven cancer suitable for treatment with a TRK-specific inhibitor.

The LMNA–NTRK1 Fusion Sarcoma Patient Responds to Treatment with LOXO-101

After the initial diagnosis in September 2014, an aggressive treatment plan was agreed upon, and she enrolled on a phase II trial of sorafenib with chemotherapy, preoperative radiation, and limb-sparing surgery (ClinicalTrials.gov no. NCT02050919). After 2 weeks of sorafenib 400 mg daily, she received epirubicin 30 mg/m² daily and ifosfamide 2,500 mg/m² daily with mesna for 3 consecutive days, with continuation of daily sorafenib. The tumor became progressively more...
Clinical Response in NTRK-Fusion Sarcoma

Figure 3. Radiologic response to LOXO-101. CT obtained following preoperative chemotherapy and primary tumor resection, with arrow indicating the presence of an 18-mm right lung nodule 4 months prior to starting LOXO-101 (A), baseline imaging just prior to dosing with LOXO-101 on study (B), and following 1 cycle (28 days; C), and 4 cycles (4 months; D) of dosing with LOXO-101. The patient was observed to have metastatic disease only in the lungs, and therefore the CT scan images show axial (top) and coronal (bottom) images focusing on the thoracic cavity. The images demonstrate an initial rapid disease progression (A and B, 13-week interval) followed by a marked tumor response with decreased size and/or resolution of the numerous pulmonary metastases [B-D, 4-week and 16-week intervals since baseline].

painful during these 5 weeks of systemic therapy. During simulation for preoperative radiation, extension of the tumor was noted cranially within the psoas muscle, precluding the safe administration of effective radiation doses due to predicted bowel toxicity. She therefore came off protocol and proceeded to surgical resection. Resection of the primary tumor achieved negative margins, and review of the pathologic specimen confirmed 90% tumor necrosis. A restaging chest CT (shown in Fig. 3A) obtained 9 weeks after initial scans showed worsening metastatic disease, with the largest nodule now measuring 18 mm. The patient’s postoperative course was complicated by a polymicrobial wound infection, requiring repeated wound debridement and prolonged antibiotic therapy. Repeat chest CT was obtained before resumption of chemotherapy and demonstrated dramatic progression over the prior 9 weeks, with multiple pulmonary nodules greater than 3 cm, the largest nearly 7 cm, and a large left pleural effusion. In February 2015, after placement of a tunneled pleural drain and initiation of supplemental home oxygen, the patient received one dose of doxorubicin 75 mg/m² while awaiting enrollment on the LOXO-101 clinical trial.

Based on multiple lines of genetic and functional biomarker data suggesting the presence of a TRK driver oncogene, the patient was referred for consideration of enrollment into the phase I trial of LOXO-101 (ClinicalTrials.gov no. NCT02122913) in February 2015. In March 2015, the patient was found eligible for the trial and provided written informed consent. The baseline CT scan showed continued tumor progression with multiple large pulmonary metastases in both lungs, although the pleural effusion had resolved following placement of the pleural drain (Fig. 3B). On clinical presentation, the patient had significant exertional dyspnea and required 5 L of supplemental oxygen to maintain an oxygen saturation of 90%. Baseline laboratory values were notable for an elevated CA125 tumor marker level (Supplementary Fig. S5). The patient was assigned to receive LOXO-101 100 mg twice daily. During cycle 1, the patient was seen weekly for pharmacokinetic and safety data collection. No drug-related adverse events were noted, and the patient experienced weekly improvement in her exertional dyspnea during this 4-week period. The CA125 levels normalized over cycle 1. A CT was performed prior to the start of cycle 2 day 1, which demonstrated a marked improvement in multiple pulmonary metastases and was deemed a partial response by RECIST 1.1 (Fig. 3C). Additional CT scans on cycle 5 day 1 (after 4 months of LOXO-101 dosing) demonstrated almost complete tumor disappearance of the largest tumors (Fig. 3D). Clinically, the patient had significantly improved exertional dyspnea and was no longer requiring supplemental oxygen, with an oxygen saturation of 97% on room air. After 4 months of dosing, the patient did not have any adverse events that were attributed to LOXO-101.

DISCUSSION

TRK fusions have been identified as a rare subset of a number of diverse tumor histologies (15, 16). The genomic structures of these TRK fusions and the inferred protein structures have suggested that these genes are oncogenic drivers, and previously reported preclinical work in addition to that shown here supports this hypothesis (6, 7, 9). The first patient with a documented NTRK fusion in this clinical trial demonstrated substantial tumor regression when treated with a selective inhibitor of TRK, providing clinical validation of this molecular target.

TRK fusions are relatively unknown in soft-tissue sarcoma (STS), and this clinical response also indicates the potential for actionable molecular targets for this disease.
There is a large unmet clinical need for better treatments in advanced STS, a heterogeneous group of tumors of mesenchymal origin encompassing more than 50 histologic subtypes. More than 12,000 Americans will be diagnosed with STS this year, and 4,700 people will die from the disease (17). Inoperable metastatic STS is treated palliatively, with a median overall survival of approximately 1 year and a 5-year survival rate of less than 20% (18). The standard of care for most advanced STS subtypes remains single-agent doxorubicin, with an expected response rate of approximately 20% (25–27). The only previously known defining TRK gene fusion has been previously reported (26). Foundation Medicine has identified a large unmet need for better treatments for sarcoma. We found that 4 of the 8 sarcoma patients with NTRK fusions are under the age of 25 (Fisher exact test, P value = 4 × 10−4), and 4 of the 8 are under the age of 5 (Fisher exact test, P value = 2 × 10−7), indicating an increased detection rate of NTRK fusions among pediatric patients (4.1% 95% CI, 1.8%–9.3%) and particularly those under the age of 5 (14.3% 95% CI, 5.7%–31.5%). Also of interest, one of the gene fusions detected combines the majority of the NTRK3 gene (exons 1–17) to the 3′ end of the HOMER2 gene (exons 2–9), which contains a dimerization domain (coiled-coil domain), and therefore represents a 3′ gene fusion event that has been described for multiple other RTK-encoding genes, such as EGFR, ALX, and FGFR3 (17, 28, 29). Because this patient also had a CDKN2A/B deletion, we decided to examine whether co-occurrence of these two lesions was common in sarcomas. We found that 4 of the 8 sarcoma patients with an NTRK fusion also harbored a CDKN2A/B deletion (Table 1); 14% of all sarcomas tested by Foundation Medicine have been found to harbor CDKN2A/B deletions (30).

LOXO-101 (ARRY-470) has previously been demonstrated to have no effect on cell lines that lack a TRK oncogene (7). In this report, three different cell line models, each with different tumor histologies and TRK fusions, demonstrated dose-dependent inhibition by LOXO-101 in vitro. Although there were subtle differences in signaling, such as AKT dependence on TRK signaling, it remains unclear whether these differences are caused by the cell context (histologic origin or genetic context) or the gene fusion itself. For example, the persistence of AKT signaling in the CUTO-3.29 cells may account for the slightly higher IC50 of this cell line compared with KM12 and MO-91 cells where pAKT was reduced with LOXO-101. Identification of additional patients and cell line models may help answer this question in

Table 1. Clinical characteristics of patients with STS harboring NTRK fusion genes

<table>
<thead>
<tr>
<th>5′ Gene</th>
<th>5′ Last exon</th>
<th>3′ Gene</th>
<th>3′ First exon</th>
<th>CDKN2A/B deletion? (Y/N)</th>
<th>Disease*</th>
<th>Gender</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMNA</td>
<td>2</td>
<td>NTRK1</td>
<td>11</td>
<td>Y</td>
<td>STS (nos; n = 179)</td>
<td>F</td>
<td>41</td>
</tr>
<tr>
<td>LMNA</td>
<td>10</td>
<td>NTRK1</td>
<td>11</td>
<td>Y</td>
<td>STS (nos; n = 179)</td>
<td>M</td>
<td>22</td>
</tr>
<tr>
<td>LMNA</td>
<td>10</td>
<td>NTRK1</td>
<td>12</td>
<td>Y</td>
<td>Soft-tissue fibrosarcoma (n = 28)</td>
<td>M</td>
<td>Under 5</td>
</tr>
<tr>
<td>SQSTM1</td>
<td>2</td>
<td>NTRK1</td>
<td>10</td>
<td>N</td>
<td>Soft-tissue fibrosarcoma (n = 28)</td>
<td>F</td>
<td>Under 5</td>
</tr>
<tr>
<td>TPM3</td>
<td>7</td>
<td>NTRK1</td>
<td>10</td>
<td>N</td>
<td>Soft-tissue schwannoma (n = 3)</td>
<td>M</td>
<td>Under 5</td>
</tr>
<tr>
<td>ETV6</td>
<td>5</td>
<td>NTRK3</td>
<td>15</td>
<td>N</td>
<td>Soft-tissue hemangioma (n = 4)</td>
<td>F</td>
<td>Under 5</td>
</tr>
<tr>
<td>TFG</td>
<td>6</td>
<td>NTRK3</td>
<td>14</td>
<td>Y</td>
<td>Soft-tissue solitary fibrous tumor (n = 28)</td>
<td>M</td>
<td>17</td>
</tr>
<tr>
<td>NTRK3</td>
<td>17</td>
<td>HOMER2</td>
<td>2</td>
<td>N</td>
<td>STS (nos; n = 179)</td>
<td>F</td>
<td>68</td>
</tr>
</tbody>
</table>

* n represents the total number of patients within each disease ontology. Abbreviation: nos, not otherwise specified.
Clinical Response in NTRK-Fusion Sarcoma

RT-PCR and DNA Sequencing

RT-PCR was performed as previously described using the forward primer to LMNA (LMNA F1, 5′-ggaggcagcgtcgta-3′; ref. 9) and the reverse primer to NTRK1 (NTRK1 R1, 5′-cgcgctgagggggaac-3′), DNA sequencing of the RT-PCR product was performed using Sanger DNA Sequencing at the Pathology Core at the University of Colorado.

Cell Lines

CUTO-3 cell lines were initiated from the malignant pleural effusion of a patient with stage IV lung adenocarcinoma harboring the MPRIP–NTRK1 gene fusion as previously described (7, 31). IRB-approved informed consent to derive immortal cell lines was obtained from the patient. CUTO-3.29 was derived from the same malignant pleural effusion by single-cell cloning. KM12 and MO-91 have been previously described (7, 10). All cell lines in this study were authenticated by DNA fingerprinting by short tandem repeat analysis using the AmpFLSTR Identifier PCR Amplification Kit (Cat. # 4322288 from Invitrogen Life Technologies/Applied Biosystems) in July 2015 by the Barbara Davis Center Molecular Biology Service Center at the University of Colorado.

PDX Generation

IRB-approved informed consent to generate patient-derived murine xenografts was obtained from the relevant patients. Animal care and procedures were approved by the Institutional Animal Care and Use Committee Office of the University of Colorado Anschutz Medical Campus. Pleural fluid (CULC001) from a lung adenocarcinoma patient harboring an MPRIP–NTRK1 gene fusion was centrifuged, and the resulting cell pellet was suspended in 5 mL ACK buffer (Lonza) for 2 minutes allowing for the complete lysis of red blood cells. Lysis was halted by the addition of 20 mL PBS and centrifuging the samples. The pellet was washed twice with PBS prior to being suspended in DMEM-supplemented media as above. One hundred microliters of cells (1 × 10^6 per flank) suspended in a 1:1 mix of DMEM and Matrigel (BD) were injected subcutaneously into the flanks of 5 nude mice. Tumor tissue from an oncogene-negative lung adenocarcinoma patient (CULC002) was cut into 3 × 3 × 3 mm pieces that were transferred to DMEM supplemented with 10% FBS, 200 units/mL penicillin, and 200 µg/mL streptomycin. Tumor pieces were dipped in Matrigel (Corning) and inserted into incisions on each flank of 5 nude mice. Propagation and maintenance of resulting xenografts were previously described (32).

Proximity Ligation Assays

Cells were seeded onto glass coverslips (in a 48-well plate) or chamber slides at 25k to 75k cells/well. Cells were treated with the indicated doses and times then fixed for 15 minutes by shaking at room temperature in 4% paraformaldehyde. Cells were rinsed twice in PBS, and then the Duolink in situ PLA Kit from SigmaAldrich in mouse/rabbit (Red) was used according to the manufacturer’s protocol (cat. # DUO92101). Antibody concentrations were optimized using immunofluorescence prior to PLA experiments. FFPE tissue PLAs from mice or patients were prepared as described in histology. In addition, samples were treated with 300 mmol/L glycine for 15 minutes prior to the blocking step; otherwise, the assay was performed according to the manufacturer’s protocol. Cells were mounted using Prolong gold anti-fade reagent (with DAPI) and cured overnight prior to imaging. Images were taken either on a Nikon standard inverted fluorescent microscope at 40×, or on the 31 Marinas spinning disc confocal in the University of Colorado Anschutz Medical Campus Advanced Light Microscopy Core at 40× or 100×. The following antibodies were used: TRK (C17F1; 1:100) and ALK (D5F3; 1:200–1:400) from Cell Signaling Technology, SHC1 (1:50) from Novus, and GRB2 (610111; 1:200–1:400) from BD.
Proliferation Assays
All proliferation assays were performed in media supplemented with 5% FBS as previously described, using Cell Titer 96 MTS (Promega). Cells were seeded 500 to 2,000 cells per well and treated for 72 hours at the drug concentrations described on each graph. Each assay was performed in triplicate in at least 3 independent biological replicates. Data were plotted, and IC50 values were calculated using GraphPad software.

Mouse Xenograft Studies
Athymic nude mice were obtained from Harlan Laboratories and maintained under aseptic conditions. The care and treatment of experimental animals were in accordance with institutional guidelines. KM12 cells (5 × 10^3) were injected subcutaneously into the dorsal flank area of the mice. Tumor volume was monitored by direct measurement with calipers and calculated by the formula: length × width^2/2. Following the establishment of tumor and when the tumor size was between 150 and 200 mm^2, mice were randomly selected to receive diluent, 60 mg/kg/dose, or 200 mg/kg/dose of LOXO-101. LOXO-101 was administered by oral gavage once daily for 14 days. After the last dose, tissue and blood were collected at 3, 6, and 24 hours after treatment.

Immunoblotting
Immunoblotting was performed as previously described (7). Briefly, cells were lysed in RIPA buffer with Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific) and diluted in loading buffer (LI-COR Biosciences). Membranes were scanned and analyzed using the Odyssey Imaging System and software (LI-COR). The following antibodies were used from Cell Signaling: pTRK Y490 (rabbit polyclonal, #9141; 1:1,000), eERK1/2-XP T202/Y204 (#9101; 1:2,000), ERK1/2 (1:2,000), PAKT S473 (rabbit mAb, #4060; 1:2,000), and AKT mouse clone D3A7 (#2920; 1:2,000). TRK (C-14) rabbit polyclonal antibody (1:1,000) was purchased from Santa Cruz Biotechnology. GAPDH (MAB574; 1:5,000) and pTYR (4G10; 1:2,000) were from Millipore.

Statistical Analysis
CIs for the detection rate of NTRK fusions in samples from patients with sarcoma were calculated using the 1-sample proportion test. The disease histology classification was based on the Foundation Medicine disease ontology as of April 2015. The enrichment of NTRK fusions in younger patient groups was tested using the Fisher exact test. All statistical testing was performed in R v 3.1.3. Comparison of treatment arms for the in vivo mouse xenograft studies was performed using repeated measures ANOVA with Bonferroni correction using GraphPad software.

Disclosure of Potential Conflicts of Interest
R.C. Doebele reports receiving commercial research grants from Abbott Molecular, Loxo Oncology, and Mirati Therapeutics; is a consultant/advisory board member for Loxo Oncology; and has received licensing fees from Abbott Molecular (licensed patent), Blueprint Medicines (licensed cell line), and Chugai (licensed cell line). A.T. Le has received licensing fees from Abbott Molecular (licensed patent). M. Varella-Garcia reports receiving a commercial research grant from Abbott Molecular and has ownership interest in a patent for use of FISH probes for molecular diagnosis. D.L. Aisner has received speakers bureau honoraria from AstraZeneca and Clovis. Y. Li has ownership interest in Foundation Medicine. P.J. Stephens has ownership interest in Foundation Medicine. D. Morosini has ownership interest in Foundation Medicine. J.A. Low has ownership interest in Loxo Oncology. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: R.C. Doebele, L.E. Davis, J.A. Low
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): R.C. Doebele, A.T. Le, A. Estrada-Bernal, S. Keysar, A. Jimeno, M. Varella-Garcia, D.L. Aisner, D. Morosini, M. Fernandes, J.A. Low
Analysis and interpretation of data (e.g., statistical analysis, bioinformatics, computational analysis): R.C. Doebele, A. Vaishnavi, A.T. Le, A. Estrada-Bernal, M. Varella-Garcia, Y. Li, P.J. Stephens, B.B. Tuch, N. Nanda, J.A. Low
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): L.E. Davis, A.T. Le, B.B. Tuch, M. Fernandes, N. Nanda, J.A. Low
Study supervision: R.C. Doebele, M. Fernandes, J.A. Low

Acknowledgments
The authors thank the patient and her family for her participation in this clinical trial, and prior patients at the University of Colorado for graciously donating the tumor tissue that was used to generate cell lines and PDXs. They also thank Nikki Ayodeji and the remainder of the clinical trial staff at the University of Colorado, and Carol Hill at Loxo Oncology.

Grant Support
This study was funded by the State of Colorado and University of Colorado Technology Transfer Office Bioscience Discovery Evaluation Grant Program, the University of Colorado Lung Cancer SPORE (funded by NCI grant P50CA058187), a Loxo Oncology research grant, and a V Foundation Scholar Award (to R.C. Doebele). The study was also supported by NIH/NCI CCSG P30CA046934 (Molecular Pathology Shared Resource; to M. Varella-Garcia and D.L. Aisner).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received April 15, 2015; revised July 24, 2015; accepted July 24, 2015; published OnlineFirst July 27, 2015.

REFERENCES
Clinical Response in NTRK-Fusion Sarcoma

An Oncogenic *NTRK* Fusion in a Patient with Soft-Tissue Sarcoma with Response to the Tropomyosin-Related Kinase Inhibitor LOXO-101
