A Coding Single-Nucleotide Polymorphism in Lysine Demethylase KDM4A Associates with Increased Sensitivity to mTOR Inhibitors ... 245
Précis: A germline coding SNP in the chromatin-modifying enzyme gene KDM4A increases its protein turnover and enhances mTOR inhibitor sensitivity, suggesting this SNP as a potential candidate biomarker in NSCLC.
See commentary, p. 228
See article, p. 255

Lysine Demethylase KDM4A Associates with Translation Machinery and Regulates Protein Synthesis255
C. Van Rechem, J.C. Black, M. Boukhali, M.J. Aryee, S. Gräslund, W. Haas, C.H. Benes, and J.R. Whetstine
Précis: Cytoplasmic KDM4A modulates protein synthesis via interaction with the translation initiation complex, and inhibition of KDM4A/KDM5A enhances mTOR inhibitor sensitivity.
See commentary, p. 228
See article, p. 245

Ligand-Independent EPHA2 Signaling Drives the Adoption of a Targeted Therapy–Mediated Metastatic Melanoma Phenotype 264
Précis: Chronic BRAF inhibition leads to AKT–EPHA2-induced melanoma cell invasion and is associated with metastatic spread in patients treated with BRAF inhibitors.
See article, p. 274
EPHA2 Is a Mediator of Vemurafenib Resistance and a Novel Therapeutic Target in Melanoma 274
Précis: EPHA2 upregulation confers BRAF inhibitor resistance in melanoma, which can be overcome by treatment with small-molecule inhibitors targeting EPHA2.
See article, p. 264

PRMT5 Is Required for Lymphomagenesis Triggered by Multiple Oncogenic Drivers 288
Précis: PRMT5 cooperates with oncogenic drivers such as cyclin D1 to promote lymphomagenesis via p53 methylation, which alters p53 chromatin occupancy and inhibits proapoptotic p53 target genes.

Combined Inhibition of MAP Kinase and KIT Signaling Synergistically Destabilizes ETV1 and Suppresses GIST Tumor Growth 304
Précis: Targeted destabilization of the lineage-specific transcription factor ETV1 via dual KIT/MEK inhibition disrupts an ETV1–KIT positive feedback loop and potentially inhibits GIST tumor growth.
See commentary, p. 231

JAK–STAT Pathway Activation in Malignant and Nonmalignant Cells Contributes to MPN Pathogenesis and Therapeutic Response 316
Précis: Single-cell secretomic profiling reveals that JAK–STAT pathway inhibition normalizes aberrant cytokine production by both malignant and nonmalignant bone marrow cells in myeloproliferative neoplasms (MPN).
See commentary, p. 234

Correction: Comprehensive Genomic Profiling of Pancreatic Acinar Cell Carcinomas Identifies Recurrent RAF Fusions and Frequent Inactivation of DNA Repair Genes 332

Correction: Comprehensive Genomic Profiling of Pancreatic Acinar Cell Carcinomas Identifies Recurrent RAF Fusions and Frequent Inactivation of DNA Repair Genes 332