IN THIS ISSUE
Highlighted research articles 339

NEWS IN BRIEF
Important news stories affecting the community 342

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 347

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/content/early/by/section.

VIEWS
In The Spotlight
It Takes a Village to Unmask HSTL. 352
N. Yoshida and D.M. Weinstock

See article, p. 369

Exploring the Link between the Germline and Somatic Genome in Cancer. 354
P. Geeleher and R.S. Huang

See article, p. 410

Anaphase-Promoting Complex Adaptor FZR1/CDH1 Blocks BRAF Signaling Both by Targeting BRAF for Proteolytic Degradation and by Disrupting BRAF Dimerization. 356
C. Zhang and G. Bollag

See article, p. 424

RESEARCH BRIEFS
The Genetic Basis of Hepatosplenic T-cell Lymphoma. 369

Précis: In-depth genetic characterization of the genomic landscape of hepatosplenic T-cell lymphoma identifies SETD2 as a tumor suppressor and STAT5B and PIK3CD as drivers of hepatosplenic T-cell lymphoma.

See commentary, p. 352

PTEN Regulates Glutamine Flux to Pyrimidine Synthesis and Sensitivity to Dihydroorotate Dehydrogenase Inhibition. 380

Précis: PTEN-mutant tumor cells require glutamine-dependent de novo pyrimidine synthesis for their enhanced proliferation and survival, creating a vulnerability that may be targeted with DHODH inhibitors to induce DNA damage and cell death.

See related article, p. 380

Adaptive Reprogramming of De Novo Pyrimidine Synthesis Is a Metabolic Vulnerability in Triple-Negative Breast Cancer. 391
K.K. Brown, J.B. Spinelli, J.M. Asara, and A. Toker

Précis: Chemotherapy activates the de novo pyrimidine synthesis pathway to elevate pyrimidine nucleotide levels in TNBC, suggesting that targeting de novo pyrimidine synthesis may enhance chemotherapeutic efficacy.

See related article, p. 380

The Epitranscriptome of Noncoding RNAs in Cancer. 359
M. Esteller and P.P. Pandolfi

See article, p. 362
Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTK-1)

Précis: The multitargeted kinase inhibitor entrectinib is well tolerated and has antitumor activity in patients with TKI-naïve NTRK1/2/3, ROS1, or ALK-rearranged tumors, including those with CNS disease.

Interaction Landscape of Inherited Polymorphisms with Somatic Events in Cancer

Précis: A pan-cancer genome-wide association study of data from The Cancer Genome Atlas identifies genetic risk variants that affect cancer-specific somatic alterations and influence tumor site of origin.

See commentary, p. 354

The APC/C E3 Ligase Complex Activator FZR1 Restricts BRAF Oncogenic Function

Précis: The putative tumor suppressor FZR1 negatively regulates BRAF kinase activity via APC/C-dependent ubiquitination and subsequent proteolysis in nontransformed cells and APC/C-independent disruption of BRAF dimerization in cancer cells.

See commentary, p. 356

To discover interactions between germline variants and somatic events in cancer, Carter and colleagues performed a genome-wide association study, evaluating genomic data from The Cancer Genome Atlas (TCGA) including more than 5,900 tumors and 22 cancer types. Association studies that compared tumor-specific SNPs identified loci that were significantly associated with specific tumor types, while association testing of SNPs in TCGA samples and the alteration status of 138 cancer driver genes identified 35 associations between 28 germline loci and 20 cancer driver genes. Analysis of mutational heterogeneity based on germline loci identified 20 candidate cancer driver genes, 15 of which had not previously been shown to be frequently mutated. In addition to providing a resource of germline–somatic interactions in cancer, these findings demonstrate that inherited risk variants can alter the somatic evolution of cancer. For details, please see the article by Carter and colleagues on page 410.
<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/7/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail alerts</td>
<td>Sign up to receive free email-alerts related to this article or journal.</td>
</tr>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>