IN THIS ISSUE
Highlighted research articles 653

NEWS IN BRIEF
Important news stories affecting the community 656

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 661

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/content/early/by/section.

VIEWS
In The Spotlight
Improving the Armamentarium of PI3K Inhibitors with Isoform-Selective Agents: A New Light in the Darkness 666
J. Rodon and J. Taberner
See article, p. 704

Novel Mitochondrial Mechanisms of Cytarabine Resistance in Primary AML Cells 670
A.D. Schimmer
See article, p. 716

The Path of Most Resistance: Transdifferentiation Underlies Exceptional Nonresponses to Androgen Receptor Pathway Inhibition in Prostate Cancer 673
S. Sinha and P.S. Nelson
See article, p. 736

REVIEW
DNA Damage and Repair Biomarkers of Immunotherapy Response 675
K.W. Mouy, M.S. Goldberg, P.A. Konstantinopoulos, and A.D. D’Andrea

RESEARCH BRIEF
A Combined PD-1/C5a Blockade Synergistically Protects against Lung Cancer Growth and Metastasis 694
Précis: Inhibition of C5a relieved MDSC-mediated immunosuppression to enhance the efficacy of PD-1 blockade, thereby extending survival in mouse models of lung cancer and reducing primary and metastatic tumor growth.

RESEARCH ARTICLES
Phase I Dose-Escalation Study of Taselisib, an Oral PI3K Inhibitor, in Patients with Advanced Solid Tumors 704
Précis: In a phase I dose-escalation study the PI3K inhibitor taselisib was well tolerated and achieved partial responses in 36% of patients with locally advanced or metastatic solid tumors harboring PIK3CA mutations.

Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism 716
Précis: In AML patient-derived xenografts, treatment with the chemotherapeutic cytarabine selected for a resistant population exhibiting enhanced oxidative phosphorylation, but did not select for quiescent leukemic stem cells.

See commentary, p. 666
Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer

Précis: In a mouse model of Trp53/Pten-mutant castration-resistant prostate cancer (CRPC), abiraterone promotes transdifferentiation of luminal adenocarcinoma to neuroendocrine CRPC to promote drug resistance.

See commentary, p. 673

Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Antitumor Innate Immunity

Précis: The tyrosine kinase inhibitor cabozantinib triggers tumor cell secretion of chemokines, resulting in an induction of neutrophil infiltration to promote tumor clearance in a treatment-refractory mouse model of prostate cancer.

Identification of a DNA Damage–Induced Alternative Splicing Pathway That Regulates p53 and Cellular Senescence Markers

Précis: A DNA damage–induced alternative splicing pathway that includes induction of the β isoform of TP53 as a mediator of damage-induced cellular senescence.

Correction

Adaptive Reprogramming of De Novo Pyrimidine Synthesis Is a Metabolic Vulnerability in Triple-Negative Breast Cancer

Using acute myeloid leukemia (AML) patient-derived xenografts, Farge and colleagues investigated the molecular mechanisms underlying resistance to the chemotherapeutic cytarabine (AraC) in vivo. Previous reports suggested that a refractory quiescent leukemic stem cell (LSC) population underlies AraC resistance, but AraC treatment unexpectedly reduced the number of LSCs as well as mature AML cells, indicating that AraC resistance is not mediated by LSCs. Instead, AraC induced chemoresistance by selecting for a preexisting population of resistant cells that exhibited enhanced oxidative phosphorylation (OXPHOS). AraC-resistant cells showed elevated mitochondrial respiration, and blocking OXPHOS increased AraC sensitivity. Together, these findings demonstrate that high OXPHOS activity is associated with chemoresistance in AML and suggest the possibility that therapeutic targeting of mitochondrial metabolism may enhance chemosensitivity. For details, please see the article by Farge and colleagues on page 716.
CANCER DISCOVERY

7 (7)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/7/7</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/7/7. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>