FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor

Vito Guagnano2, Audrey Kauffmann1*, Simon Wöhrle1*, Christelle Stamm1*, Moriko Ito1, Louise Barys1, Astrid Pornon1, Yao Yao6, Fang Li7, Yun Zhang5, Zhi Chen5, Christopher J. Wilson4, Vincent Bordas2, Mickaël Le Douger2, L. Alex Gaither4, Jason Borawski4, John E. Monahan7, Kayitha Venkatesan3, Thomas Brümmendorf1, David M. Thomas8, Carlos Garcia-Echeverria9, Francesco Hofmann1, William R. Sellers3, Diana Graus-Porta1#

1. Novartis Institutes for BioMedical Research; Disease Area Oncology; 4002 Basel, Switzerland
2. Novartis Institutes for BioMedical Research; Global Discovery Chemistry; 4002 Basel, Switzerland
3. Novartis Institutes for BioMedical Research, Disease Area Oncology; Cambridge, MA 02139 USA
4. Novartis Institutes for BioMedical Research; Developmental and Molecular Pathways; Cambridge, MA 02139 USA
5. China Novartis Institutes for BioMedical Research; Developmental and Molecular Pathways; Shanghai 201203 China
6. China Novartis Institutes for BioMedical Research; Oncology Translational Medicine; Shanghai 201203 China
7. Novartis Institutes for BioMedical Research; Oncology Translational Research; Cambridge, MA 02139 USA
8. Sir Peter MacCallum Department of Oncology, University of Melbourne and Peter MacCallum Cancer Centre, St Andrew’s Place, east Melbourne, VIC 3002, Australia.
9. Novartis Institutes for BioMedical Research; Disease Area Oncology; 4002 Basel, Switzerland; Current address: Oncology Drug Discovery and Preclinical Research, Sanofi, 94403 Vitry-sur-Seine, France

*These authors contributed equally to the manuscript

#Correspondence: Diana Graus-Porta
Novartis Institutes for BioMedical Research
Novartis Pharma AG
CH-4002 Basel
Switzerland
phone: +41 61 6965093
e-mail: diana.graus_porta@novartis.com

Running title: Predictive modeling of FGFR inhibitor sensitivity

Key words: cancer cell line encyclopedia, FGFR, FGFR inhibitor

Abbreviations list:
FGF / FGFR: fibroblast growth factor / fibroblast growth factor receptor
CCLE: cancer cell line encyclopedia
RTK: receptor tyrosine kinase
FRS2: fibroblast growth factor receptor substrate 2

Notes:

Financial support:
David M. Thomas: VCA Translational Research Program in Sarcoma EOI_71; Senior Research Fellowship, National Health and Medical Research Council

Reprints to be sent to:
Diana Graus-Porta
Novartis Institutes for BioMedical Research
Novartis Pharma AG
CH-4002 Basel
Switzerland
phone: +41 61 6965093
e-mail: diana.graus_porta@novartis.com

Conflict of Interest
Vito Guagnano, Audrey Kauffmann, Simon Wöhrle, Christelle Stamm, Moriko Ito, Louise Barys, Astrid Pornon, Yao Yao, Fang Li, Yun Zhang, Zhi Chen, Christopher J. Wilson, Vincent Bordas, Mickaël Le Douget, L. Alex Gaither, Jason Borawski, John E. Monahan, Kavitha Venkatesan, Thomas Brümmendorf, Francesco Hofmann, William R. Sellers and Diana Graus Porta are employees of Novartis Institutes for BioMedical Research. Carlos Garcia-Echeverria was an employee of Novartis Institutes for BioMedical Research and is now an employee of Sanofi. David M. Thomas declares no conflict of interest.
Abstract

Patient stratification biomarkers that enable the translation of cancer genetic knowledge into clinical utility are essential for the successful and rapid development of emerging targeted anti-cancer therapeutics. Here we describe the identification of patient stratification biomarkers for NVP-BGJ398, a novel and selective FGFR inhibitor. By intersecting genome-wide gene expression and genomic alteration data with cell line sensitivity data across an annotated collection of cancer cell lines termed “Cancer Cell Line Encyclopedia”, we show that genetic alterations for FGFR family members predict for sensitivity to NVP-BGJ398. For the first time, we report oncogenic \textit{FGFR1} amplification in osteosarcoma as a potential patient selection biomarker. Furthermore, we show that cancer cell lines harboring \textit{FGF19} copy number gain at the 11q13 amplicon are sensitive to NVP-BGJ398 only when concomitant expression of \(\beta\)-klotho occurs. Thus, our findings provide the rationale for the clinical development of FGFR inhibitors in selected cancer patients harboring tumors with the identified predictors of sensitivity.

Significance

The success of a personalized medicine approach using targeted therapies ultimately depends on being able to identify the patients who will benefit the most from any given drug. To this end, we have integrated the molecular profiles for more than 500 cancer cell lines with sensitivity data for the novel anti-cancer drug, NVP-BGJ398 and showed that FGFR genetic alterations are the most significant predictors for sensitivity. This work has ultimately endorsed the incorporation of specific patient selection biomarkers in the clinical trials for NVP-BGJ398.
Introduction

The FGF receptor tyrosine kinase (RTK) family consisting of FGFR1, FGFR2, FGFR3 and FGFR4, encompasses the high affinity receptors for 18 different FGF ligands. These ligand-receptor combinations regulate a broad spectrum of signaling and endocrinological activities during development and in adult tissue homeostasis (1). In keeping with the importance of FGFR in normal growth control, de-regulated FGF signaling has been linked to diseases, most prominently in the pathogenesis of multiple cancers. Epidemiological and molecular studies have revealed a variety of genetic alterations in components of the FGF/FGFR signaling system, resulting in aberrant receptor activation and thus, enhanced downstream signaling.

The underlying genetic alterations are largely tissue specific and include gene amplifications, translocations and point mutations. Evidence for gene copy number changes has been reported in several studies. In particular, Beroukhim et al 2010, analyzed somatic copy-number alterations in 3,131 cancer specimens and found that FGFR1 was significantly focally amplified across the entire dataset with a GISTIC q-value of 9.05E-47, and was located within a region of focal amplification containing only FGFR1, LETM2 and WHSC1L1 (2). In breast cancer FGFR1 is preferentially amplified in estrogen receptor-positive tumors as demonstrated by chromosome in situ hybridization, and survival analysis indicates that it may also be an independent prognostic factor for poor outcome (3). Furthermore, high resolution gene copy number analysis in lung cancer revealed FGFR1 amplification preferentially in the squamous subtype (4,5). FGFR2 copy number gains, albeit with a low incidence, were reported in breast tumors (6,7) and in gastric cancer in particular in poorly differentiated adenocarcinomas (8-11). Among the ligands, FGF19 located in the common 11q13 amplicon was recently identified to be a driver gene in liver cancer in cooperation with its neighboring gene cyclin D1 (12).
Germline mutations in FGFR1, FGFR2, and FGFR3 were first discovered as causative lesions in skeletal dysplasias (13). Kinome exon sequencing in search of human cancer somatic mutations, identified FGF signaling components as the most frequently mutated coding regions among protein kinases (14). Somatic mutations of FGFR1 have been found in gliomas and lung tumors (15,16), of FGFR2 in gastric and endometrial carcinomas (17-19), of FGFR3 in bladder carcinomas and multiple myeloma (20,21), and of FGFR4 were reported in primary rhabdomyosarcomas (22).

In addition, studies of hematological malignancies have led to the characterization of chromosomal translocations involving FGFR genes. In particular, FGFR1 intragenic translocations between the N-terminus of a transcription factor and the FGFR1 kinase domain leading to constitutive kinase activation by oligomerization are responsible for 8p11 myeloproliferative disorder (23). Similar translocations of FGFR3 are associated with peripheral T-cell lymphoma (24), while in multiple myeloma recurrent chromosomal translocations of 14q32 into the immunoglobulin heavy chain switch region result in deregulated ectopic expression of FGFR3 and the adjacent multiple myeloma SET domain-containing (MMSET) gene (21).

Based on the evidence of broad genetic alteration of the FGF/FGFR system in cancer, we hypothesized that targeted inhibition of FGFRs would be an attractive modality for therapeutic intervention across multiple indications bearing such specific underlying genetic alterations. To this end, we have developed NVP-BGJ398, a potent orally bioavailable, small molecule pan-FGFR kinase inhibitor which is currently in clinical Phase I trial (25). In order to preclinically identify and validate patient stratification biomarkers to enrich for patients likely to respond to NVP-BGJ398, the Cancer Cell Line Encyclopedia (CCLE) was interrogated. The CCLE is a collection of almost 1000 cancer cell lines representing multiple tumor types that, in a collaborative effort between The Novartis Institutes for BioMedical Research and the Broad Institute, has been comprehensively annotated in terms of genome-scale mRNA
expression, gene copy number alterations and gene mutations (26). In addition, over half of these cell lines were subjected to high-throughput cell viability assays, upon exposure to hundreds of compounds representing a variety of mechanisms of action, including the FGFRs inhibitor NVP-BGJ398. Analysis of these cell lines sensitivity profiles revealed that NVP-BGJ398 significantly inhibits proliferation of cancer cell lines bearing FGF/FGFR genetic alterations across various cancer types, thus pre-clinically validating the hypothesis that a defined patient selection strategy based on tumors harboring FGF/FGFR genetic alterations is likely to enrich for responses to NVP-BGJ398.
Results

NVP-BGJ398 is a potent and selective FGFR kinase inhibitor

NVP-BGJ398 is a N-aryl-N'-pyrimidin-4-yl urea derivative that was designed by applying a new and non-conventional strategy to mimic the pyrido[2,3-d]pyrimidin-7-one core structure of a well-known class of protein kinase inhibitors (Fig. 1A) (25,27). The proposed binding mode of NVP-BGJ398 was elucidated by solving the three-dimensional structure of the FGFR1 kinase domain in complex with BGJ398 (Fig. 1B). As shown in Fig. 1B, the 4-(4-ethyl-piperazin-1-yl)-phenylamine NH and the adjacent pyrimidine nitrogen are involved in critical H-bonds with the carbonyl and the amino group of alanine 564 (an amino acid residue located in the hinge region of the ATP-binding pocket), respectively. The urea carbonyl group is engaged in a water-mediated H-bond with the side chain amino group of lysine 514, whereas the aryl ring of the 4-(4-ethyl-piperazin-1-yl)-phenylamine is in contact with the hydrophobic side chains of two amino acid residues glycine 567 and leucine 484 (the former not represented for clarity) in a sandwich-like manner. The 2,6-dichloro-3,5 dimethoxy-aniline fills optimally the complementary cavity in the kinase. Indeed, the perpendicular orientation of the tetrasubstituted benzene ring with respect to the plane of the pesudo bicyclic system enforced by the two chlorine atoms allows productive hydrophobic interactions with several amino acid residues. In addition, this same ring is responsible for an H-bond between the methoxy oxygen and the NH of aspartate 641. NVP-BGJ398 was tested against the four FGFRs and a panel of additional kinases in biochemical and cellular assays. NVP-BGJ398 inhibited FGFR1, FGFR2 and FGFR3 with single digit nM IC50s in biochemical and cellular autophosphorylation assays and FGFR4 with 38 to 60-fold lower potency (Fig. 1C and D; Suppl. Table S1). In cellular viability assays using a panel of BaF3 cell lines rendered IL-3 independent by various tyrosine kinases, the most potently inhibited kinase, in addition to the FGFRs was found to be VEGFR2, displaying 70- to 100-fold reduced potency compared to FGFR1, FGFR2 and
FGFR3. Therefore, NVP-BGJ398 is a selective, pan-FGFR kinase inhibitor, with predominant activity on FGFR1, -R2 and -R3.

Predicting responses to NVP-BGJ398 by means of the Cancer Cell Line Encyclopedia (CCLE)

Activation of the FGFR pathway is a common feature in human cancers with underlying genetic abnormalities in the FGF/FGFR system (28). To test whether tumors presenting these abnormalities depend on FGFR kinase activity, and hence would be sensitive to NVP-BGJ398, and to eventually elucidate predictive patient selection biomarkers for clinical trials with NVP-BGJ398, the anti-proliferative activity of NVP-BGJ398 was assayed in a panel of 541 cell lines from the Cancer Cell Line Encyclopedia (CCLE). From two independent high throughput cell viability screens encompassing 435 and 424 cell lines respectively, with about 80% overlap, cell viability data in triplicate met the quality criteria for NVP-BGJ398 across a total of 517 cell lines (Suppl. File 1). Analysis of cell lines distribution with respect to the Amax and inflection point values for NVP-BGJ398 across the entire cell viability dataset, indicates that a subgroup of cell lines is highly sensitive (n=35) to the compound, while the large majority of cell lines (n=482) are insensitive (Suppl. Fig. S1A). Sensitive and non-sensitive groups were defined according to specific cut-off values for Amax and Inflection point. To mitigate the risk of missing sensitive cell lines because of the accuracy limitations of a high throughput screening mode, the thresholds for sensitivity in a first filtering step were set at relatively low stringency, with Amax ≤ -40 and inflection point ≤ 1uM. In order to validate the sensitive response calls to NVP-BGJ398, the 35 cell lines fulfilling the above selection criteria (lower left quadrant in Suppl. Fig. S1A) were tested in subsequent viability assays manually.

In order to define the range of on-target FGFR-dependent inhibition of cell proliferation, the IC50 values obtained in cell viability assays for BaF3 cells rendered dependent on the specific FGFRs were used as a reference. Based on this, only cancer cell lines whose proliferation was inhibited with IC50s < 500 nM
were classified as sensitive. Among the 35 cell lines selected from the high throughput assays, 28 were confirmed sensitive to NVP-BGJ398 with IC50s ranging from 0.001 nM to 500 nM (Suppl. Fig. S1B). Additional 24 selected lines from the CCLE, for which high throughput cell line profiling data were not available, were also tested in manual cell proliferation assays and 4 of them were found to be sensitive to the FGFR inhibitor (Suppl. Fig. S1B). Collectively, among the 541 (517+24) cell lines from the CCLE subjected to viability testing, 5.9% (encompassing 13 different cancer types) were found to be sensitive to NVP-BGJ398, when an IC50 cut-off of 500 nM for on-target inhibition of cell proliferation was applied (Fig. 2).

In order to derive molecular correlates of drug sensitivity, we utilized a predictive categorical model approach as described (26). The feature matrix examined in this approach encompassed: all CCLE genomic data as single genomic features (expression, copy number, COSMIC mutation data), 25 lineage features, 1777 “GeneSet” features (expression signatures each of them consisting of multiple genes), and a composite “FGFR genetic alteration” feature consisting of 8 distinct types of FGFR genetic alterations: FGFR1, -R2, -R3 and -R4 copy number gains, activating mutations in FGFR1, -R2, and -R3, as well as the chromosomal translocations for either FGFR1 or -R3 previously reported in the literature (21,29).

From >50,000 input features, this analysis identified the “FGFR genetic alteration” feature as the top predictor for response to NVP-BGJ398 followed by two mutation features and two “GeneSet” features (Fig. 3A, 3B). As indicated in Fig. 2, within the 541 cell lines used in the analysis, only 37 were found to bear genetic abnormalities for either of the FGFRs (total of 6.8%), in line with the general low incidence of these genetic lesions in tumors. Among those, 17 cell lines were sensitive to NVP-BGJ398, representing 53% of all cell lines testing sensitive to the drug (17/32, Supp. Table S2). In contrast, in the insensitive group only 3.9% of the cell lines harbored FGFR genetic alterations. This indicates that NVP-BGJ398-sensitive tumors cells are strongly enriched among the panel of lines scoring positive for
the “FGFR genetic alteration” feature. The other two features revealed by the model among the top three predictors are “FGFR2 mutation” and “FGFR3 mutation”, indicating that genetic alterations in individual FGFRs can be identified by the predictive categorical model despite their relatively low frequency in the test set. Indeed, all the FGFR2- and FGFR3-mutated cell lines but two and one respectively, were growth inhibited by NVP-BGJ398, in line with its ability to effectively block FGFR downstream signaling in the 6 FGFR-mutated cell lines tested (Suppl. Fig. S2). Of note, all FGFR2- and FGFR3-mutant lines belong to the endometrial and multiple myeloma cancer types, respectively. Additional predictors of sensitivity included the two GeneSet expression signatures, “Development FGF-family signaling” and “Inhibition of Hedgehog signaling in medulloblastoma stem cells”, whose protein products components comprise multiple members of the FGF signaling cascade (Supp. Table S3). Interestingly, the GeneSet expression signatures-positive cell lines comprised most of the NVP-BGJ398 sensitive cell lines with FGFR genetic alterations, as well as most of the sensitive ones for which no FGFR genetic abnormalities were identified (Supp. Fig. S3A). Conversely, many of the insensitive cell lines harboring FGFR genetic alterations were GeneSet signature negative or had a low z-score (Supp. Fig. S3B).

FGFR1 amplification is associated with response to NVP-BGJ398

Since NVP-BGJ398-sensitive FGFR amplified cell lines were captured by the “FGFR genetic alteration” and “GeneSets” features, we examined further these genomic features across the CCLE. *FGFR1* copy number gain defined as log2ratio ≥1 (equal to ≥4 normalized DNA copies) was observed in cell lines of breast, lung and osteosarcoma lineages (Fig. 4A). Further analysis of the cell lines within these lineages (n=145) showed that 5 of the *FGFR1*-amplified lines were sensitive to NVP-BGJ398 in proliferation assays and displayed constitutive FGFR pathway activation, as measured by the presence of Tyr-phosphorylated FRS2, while treatment with NVP-BGJ398 led to pathway inhibition (Fig. 4B,
Supp. Fig. S1B, Fig. 4C). The scatter plot of copy number versus transcript expression revealed that the 5 sensitive cell lines were among the highest expressers of FGFR1 mRNA within the breast, lung and osteosarcoma lineages (Fig. 4B). Statistical analysis using Fisher’s exact test showed that FGFR1 amplification significantly associated with response to NVP-BGJ398 when all the cell lines were considered (p = 4.8 \times 10^{-4}) and in particular in the breast, lung and osteosarcoma subsets (p = 1.5 \times 10^{-5}). A requirement of FGFR1 activity for the proliferation has been previously shown for FGFR1-amplified breast and lung cancer cell lines (5,6). As FGFR1 amplification in osteosarcoma associated with sensitivity to a small molecule FGFR inhibitor has not previously been reported, we sought to further assess the role of FGFR1 as a cancer driver in this indication by an independent approach. To this end, lentivirus expressing in a doxycycline-inducible manner, shRNAs targeting FGFR1, introduced into G292 cells. While infection with viruses expressing two non-targeting shRNAs had no effect on protein expression levels and cell growth, the viruses directing the expression of two shRNAs targeting FGFR1 led to significant decrease in FGFR1 protein expression, FRS2 tyrosine phosphorylation and ERK phosphorylation. In parallel, the FGFR1 shRNA containing viruses suppressed G292 cell proliferation in both, monolayer and anchorage independent conditions (Fig. 4D, E, F). The functional relevance of FGFR1 amplification in the osteosarcoma cell line led us to investigate FGFR1 copy number levels in a panel of primary human osteosarcoma samples. Consistent with FGFR1 amplification in 1 out of 7 osteosarcoma cell lines within the CCLE we identified 1 out of 17 primary osteosarcoma samples as FGFR1 amplified (Fig. 4G). Interestingly, both the G292 cell line and the primary tumor sample showed similar levels of amplification, with about 5 copies of the FGFR1 gene in both cases. These results reveal for the first time that FGFR1 amplification occurs in osteosarcoma, confirm its prevalence in breast and lung cancer cells and demonstrate that FGFR1 is required for cancer cell
growth in these settings. Hence, FGFR1 amplification is a predictor of sensitivity to an FGFR inhibitor in these three lineages.

FGFR2 amplification is associated with response to NVP-BGJ398 in cell lines and primary human tumors

FGFR2-amplified cell lines were also enriched in the “FGFR genetic alteration” and “GeneSets” positive clusters. Analysis of SNP6.0 array data across the CCLE revealed high level FGFR2 amplification (log2ratio ≥1) in cell lines of gastric lineage, as previously shown (8), but also in a colon cancer line (Fig. 5A). Gene amplification in these cell lines correlated with striking FGFR2 transcript overexpression when specific Affymetrix probesets (211401_s_at_) that detect FGFR2 c-terminal splice variants, in addition to the canonical FGFR2 form, were utilized (Fig. 5B). These data are consistent with previously published results showing that breast and gastric cancer cells with FGFR2 amplification overexpress the more oncogenic FGFR2-c3 variant (30). In addition, by means of Q-RT/PCR we confirmed that also NCI-H716 colon cancer cells overexpress this specific c-terminal truncated FGFR2 isoform, and that only cell lines with FGFR2 amplification showed significant FGFR2-c3 expression (Supp. Fig. S4A).

In keeping with the high levels of FGFR2 gene expression, FGFR2-amplified gastric (KATOIII and SNU16) and colon (NCI-H716) cancer lines showed strong baseline activity of the FGFR pathway, which was modulated upon NVP-BGJ398 treatment (Fig. 5C), and were dependent on FGFR signaling for proliferation, as evident from the low nanomolar IC50 for NVP-BGJ398 (Supp. Table S2).

In agreement with inhibition of in vitro proliferation, NVP-BGJ398 also effectively inhibited growth of SNU16 tumor xenografts in a dose-dependent manner when administered orally to rats on a daily schedule (Fig. 5D). Tumor growth inhibition was correlated with inhibition of FGFR2 tyrosine phosphorylation in tumor tissue (Fig. 5E), which was almost completely abolished at 3 hours post-
dosing and recovered at 24 hours post-dosing, in line with the pharmacokinetic profile of the compound (25).

A statistical analysis by Fisher’s exact test showed a significant association between FGFR2 amplification and response to NVP-BGJ398 across the cell line encyclopedia (p = 1.9 \times 10^{-4}), as well as when restricted to the gastric and colon cancer lineages (p = 1.6 \times 10^{-4}). In order to further test the predictive value of FGFR2 genomic amplification, we interrogated a collection of 49 human primary gastric tumors for which SNP6.0 copy number and Affymetrix expression data had been generated. Two primary tumors showing FGFR2 copy number \geq 4 and FGFR2 transcript overexpression were selected for in vivo anti-tumor efficacy testing in mice (Fig. 6A). Oral treatment with NVP-BGJ398 on a daily schedule led to substantial tumor growth inhibition leading to tumor stasis and regression at doses \geq 15mg/kg/qd (Fig. 6B and C). Pharmacodynamic effects were evaluated in the GAM033 tumor model: at 15mg/kg, NVP-BGJ398 completely suppressed FGFR2 tyrosine phosphorylation at 3 hours post-dosing (Fig. 6D), in line with the pharmacokinetic profile of the compound (25).

Thus, FGFR2 amplified cell lines are sensitive to NVP-BGJ398 in vitro as well as when grown in vivo as human tumor xenografts. Hence we envision that human gastric tumors harboring FGFR2 amplification will be responsive to NVP-BGJ398 in the clinic. Interestingly, in addition to confirming the incidence of this genetic alteration in gastric cancer, we also found FGFR2 amplification in 1 of 22 oesophageal tumors, which offers a novel potential clinical opportunity for an FGFR inhibitor (Supp Fig. S4B).

FGF19 amplification in liver cancer correlates with response to NVP-BGJ398

Approximately 47% cell lines responsive to NVP-BGJ398 did not harbor FGFR genetic alterations. Among those, the gene encoding for the FGF19 ligand was found to be amplified (log2ratio \geq 1) in the liver cancer cell lines HUH7, HEP3B and JHH7 (Fig. 7A), as previously reported (12). The analysis of
the CCLE SNP6.0 data revealed 49 additional cell lines with *FGF19* copy number gain across various cancer types (Suppl. Fig. S5A, upper panel). However, among the *FGF19* amplified cell lines, only the three liver cell lines showing concomitant expression of β-Klotho were sensitive to NVP-BGJ398, with the exception of a breast and a lung cancer cell line (MDAMB134 and DMS114) that harbor *FGFR1* amplification (Fig. 7A and Supp. Fig. S5A, lower panel). Accordingly, Fisher’s exact test showed a statistically significant association between *FGF19* copy number and response to NVP-BGJ398 for the liver cancer lineage (p = 0.01), but not when the correlation was tested across all lineages (p = 0.2). The three sensitive liver cancer cell lines showed constitutive FRS2 Tyr-phosphorylation, which was abolished upon treatment with NVP-BGJ398 at doses of 50 nM (Fig. 7B). In hepatocytes and liver cancer cells, FGF19 has been shown to signal through FGFR4 (31). In line with these findings, we found that the three cell lines expressed significantly high levels of *FGFR4* mRNA (Fig. 7A) and conditional silencing of FGFR4 with three different shRNAs in the JHH7 cell line, previously shown to require FGF19 for survival, led to significant inhibition of cell proliferation (Fig. 7C, D).

Thus, these results suggest that while most cancers with 11q13 amplification may not respond to FGF19/FGFR4 inhibitors, the subset of *FGF19*-amplified liver cancer, with concomitant expression of β-Klotho may provide a suitable niche indication for this therapeutic modality.
Discussion

In this study we have identified patient selection strategies for NVP-BGJ398, a novel selective pan-FGFR kinase inhibitor currently in Phase I clinical trials in cancer patients. In order to guide patient selection and to maximize the likelihood of patient benefit and successful clinical proof of concept for this novel targeted anti-cancer modality, we have analyzed the sensitivity of over 500 cell lines from the CCLE to NVP-BGJ398 in cell viability assays, and intersected response data with information on gene expression and genomic alterations. We show that NVP-BGJ398 inhibits proliferation of about 6% of the cancer cell lines tested at concentrations that are consistent with its mechanism of action and in line with the its highly selective nature. Further, the integrative analysis of the CCLE has revealed “FGFR genetic alteration” as the top predictor for response to NVP-BGJ398 among over 50,000 input features containing genomic, lineage and geneset features.

Indeed, amongst the 541 cell lines in the CCLE with pharmacological drug sensitivity data, 37 harbored an FGFR genetic alteration and 17 of them were sensitive to NVP-BGJ398, i.e. 53% of the total cell lines responding to the drug (17/32). Gene amplifications were most prevalent (10/17) and involved FGFR1, FGFR2 and surprisingly also FGFR3, followed by sequence variations in FGFR2 and FGFR3 (6/17), and chromosomal translocations affecting FGFR1 and FGFR3 (3/17). High resolution SNP6.0 array data across the CCLE subjected to analysis with the GISTIC algorithm revealed that the FGFR1 locus lies in a focal peak region of amplification, whereas FGFR2 was found in a GISTIC peak when the analysis was restricted to the gastric cancer cell lines (32). In this setting, NVP-BGJ398 response was associated in a statistically significant manner with both, FGFR1 amplification and FGFR2 amplification. These data confirmed the finding of FGFR1 and FGFR2 copy number alterations in breast, lung and gastric cancer cell lines as previously reported (5,6,9), but it also revealed the occurrence of these genetic lesions in additional cancer types, such as osteosarcoma and colon.
respectively. In this context among the 7 osteosarcoma lines in the CCLE, the one harboring FGFR1 amplification (G292) was significantly growth suppressed under both monolayer and soft agar conditions upon inducible knock down of FGFR1 by two distinct shRNAs, consistent with the notion that amplified FGFR1 confers cancer dependence. In addition, and for the first time, we report FGFR1 amplification in 1/17 primary osteosarcomas suggesting that this may be another potential indication for an FGFR inhibitor. Similarly, the only colon cancer cell line NCI-H710 with high level FGFR2 amplification was sensitive to NVP-BGJ398. In line with the notion that FGFR2 is a driver oncogene when its locus is aberrantly amplified, we selected human primary gastric tumors for the presence of FGFR2 copy number alterations and confirmed them to be exquisitely responsive to the selective FGFR inhibitor NVP-BGJ398, whereas models with normal FGFR2 DNA copy number were insensitive to the drug (data not shown). In agreement with previous analyses of FGFR2 copy number alterations performed by FISH (8,9) or Southern blot (11), we have found high level amplifications (CN > 10) of FGFR2 by means of Q-PCR in 5% of gastric tumors among a total of 147 specimens, and in 1 of 22 oesophageal tumors, not previously reported, thus providing additional new opportunities for the therapeutic application of an FGFR inhibitor. Interestingly, we also identified FGFR3 copy number gains in three of the bladder cancer cell lines that were inhibited by NVP-BGJ398 (log2ratio 1 for RT112 and RT112/84, and log2ratio 0.94 for RT4), which may account for the significant high FGFR3 transcript expression in these cell lines (Supp Fig. S5B). Taken together, these data supports the evaluation of NVP-BGJ398 in cancer types selected upon the presence of FGFR genes amplification. Genomic predictors of drug sensitivity also revealed FGFR2 and FGFR3 mutation among the top three most significant features. The viability of 6 of the 9 FGFR-mutated cell lines was pharmacologically inhibited by NVP-BGJ398, they belong to the endometrial and multiple myeloma lineages and showed constitutive FGFR pathway activation (Supp. Fig. S2), in line with the notion that these mutations result
in receptor kinase activation (17,19,21). Notably, most endometrial FGFR2-mutated cell lines carried also mutations affecting either PTEN or PIK3CA (Suppl. Table 4), suggesting that activation of this pathway does not confer resistance to an FGFR inhibitory therapy in this cancer type. Of note, we observed constitutive AKT phosphorylation in the endometrial cancer lines, which was not affected by NVP-BGJ398 treatment (Suppl. Fig. S2). Therefore, PI3K inhibitors may provide opportunities for combination therapy with NVP-BGJ398 in these specific settings.

Interestingly, 54% (n=20) of the FGFR genetically altered cell lines were not NVP-BGJ398-sensitive. It is likely that at least in some of these cell lines, additional genetic alterations bypass FGFR dependency. For instance, one cell line (A375) had a BRAFV600E mutation, 10% (n=2) of the cell lines showed amplification of other oncogenes (JIMT1: HER2 amplification and NCI-H1703: PDGFRα amplification), while 20% (n=4) harbored KRAS mutations (Suppl. Table 4), and KRAS mutation was revealed by the predictive model as one of the genomic predictors for NVP-BGJ398 insensitivity (data not shown). Thus, we are currently exploring whether hypothesis-driven concomitant targeting of other genetically altered molecular pathways will synergize with NVP-BGJ398 in these settings.

Alternatively, and in the case of the breast and lung FGFR1-amplified cell lines that did not respond to NVP-BGJ398, it is plausible that one of the other genes found in the GISTIC peak (LETM2, WHSC1L1) may have become the driver gene. It is also noticeable that none of the FGFR4-amplified cell lines in our data set responded to the FGFR inhibitor, thus indicating that FGFR4 is not a driver oncogene in those settings.

Conversely, several cell lines that displayed sensitivity to NVP-BGJ398 did not harbor FGFR genetic lesions. 3 of them, belonging to the liver cancer type showed copy number gain for the FGFR4 ligand, FGF19, and FGF19 amplification was statistically significant associated with response to NVP-BGJ398 when the analysis was restricted to liver cancer cell lines. Further, by conditional knock down of
FGFR4, we showed dependency on this RTK in the JHH7 cells thus, supporting the concept of an FGF19 / FGFR4 autocrine loop as the oncogenic driver in liver cancer with *FGF19* amplification. In line with the notion that this autocrine loop is only functional in the presence of the co-receptor β-Klotho, which is essential for high affinity interactions of FGF19 with FGFR4 (33), we showed that only the three liver cancer cells with *FGF19* amplification and concomitant β-Klotho expression responded to NVP-BGJ398. This suggests that β-Klotho depicts another critical determinant for patient selection, which has not been analyzed previously. Consequently, *FGF19* amplification was not associated with NVP-BGJ398 response in other cancer types most likely due to the lack or low β-Klotho expression. This is in line with a recent study (12) showing that *FGF19* amplification correlated with increased expression and with sensitivity to FGF19 blockage only in liver cancer cell lines.

Taken together, we have not detected FGF/FGFR genetic abnormalities in 37.5% (n=12) of NVP-BGJ398-sensitive cell lines. Most of these cell lines were GeneSet signature positive or expressed high levels of either of the FGFRs and FGF ligands and generally showed constitutive activation of the FGFR pathway and modulation upon NVP-BGJ398 treatment (Supp. Fig. S2), suggesting that FGFR dependency could be the result of intrinsic upregulation of components of the FGF signaling system leading to constitutive pathway activation. It will be interesting in future studies to address the underlying mechanisms resulting in FGF/FGFR induction in the absence of gene copy number gain or activating mutations of the receptors. It is plausible that epigenetic modulations or genetic alterations on other pathways ultimately leading to FGF/FGFR elevated expression and/or activation may have occurred. For example, it has recently been discovered that FGFR4 overexpression occurs in alveolar rhabdomyosarcomas with PAX3/7:FKHR translocation and that FGFR4 is a downstream target of the oncogenic fusion protein (34).
In summary, by leveraging the integration of the Cancer Cell Line Encyclopedia annotation and compound sensitivity data, we have identified genetic alterations in various members of the FGF/FGFR system that confer cancer dependence and thus represent suitable predictive biomarkers to guide patient selection for treatment with selective FGFRs targeting agents, such as the novel pan-FGFR kinase inhibitor NVP-BGJ398. Based on this data, a Phase I clinical trial with NVP-BGJ398 is being conducted in which exclusively cancer patients bearing FGFR genetic alterations are enrolled (35).
Experimental procedures

Compound and antibodies

NVP-BGJ398 has been identified and synthesized in the Global Discovery Chemistry department at NIBR (Novartis) as described (25). For in vitro studies, 10 mM stock solutions were prepared in 100% DMSO. For in vivo studies in rodents, NVP-BGJ398 was formulated in acetic acid/acetate buffer pH 4.6 / PEG300 1:1.

Antibodies used for Western blot were anti-S473P-Akt (#9271), anti-Akt (#9271), anti-T202P/Y204P-Erk1/2 (#9101), anti-Erk1/2 (#9102), anti-Y196P-FRS2 (#3864), anti-Y653/654P-FGFR (55H2) (#3476) from Cell Signaling; anti- Flg (M2F12) FGFR1 (#sc-57132), anti-Bek (C-17) FGFR2 (#sc-122), anti-FGFR4 (C-16) (#sc-124), anti-FRS2 (H-91) (#sc-8318) from Santa Cruz; anti-FGFR2 (α isoforms) (MAB6841) from R&D Systems; anti-FRS2/SNT-1 (#05-502), anti-phospho-Tyrosine, clone 4G10 (05-321), anti-α-actinin (#05-384) from Millipore; anti-β-tubulin (# T4026) from Sigma.

In vitro compound profiling

Biochemical in vitro kinase assays, cellular FGFR autophosphorylation assays and BaF3 cell proliferation assays were performed as described (25).

High-throughput cell line profiling and manual cell proliferation assays

Cell lines were obtained from ATCC, DSMZ and HSSRB and cultured in RPMI or DMEM plus 10% FBS (Invitrogen) at 37°C 5% CO2 using automated processing. Cell line identities were confirmed using a 48 variant SNP panel comparing to previous cell line tests. A detailed description of the high-throughput cell viability assays can be found in Barretina et al (26). In brief, assays were automated and performed with an ultra-high throughput screening system. Cell lines were dispensed into tissue culture treated 1536 well plates in a final volume of 5 uL and a concentration of 250 cells per well and were allowed to adhere and cultured for 12 to 24 hours. Pre-diluted compounds were transferred to the cells
resulting in a final concentration range of 8 uM to 2.5 nM over 8 steps and a uniform DMSO concentration of 0.4%. The cell – compound mixture was incubated for 72 to 84 hours and cell growth was analyzed by determination of the cellular ATP content (Cell Titer Glo; Promega) using a luminescence plate reader (ViewLux; Perkin Elmer). On all plates, wells containing vehicle only and the positive control MG132 at 1uM, a proteasome inhibitor, were included. Raw values were percent normalized on a plate by plate basis such that 0% was equivalent to the median of vehicle wells and -100% equivalent to the median of the positive control. Quality of cell response to the positive control (proteasome inhibitor MG132) was measured using a standard Z’ factor (36). In general nearly all responses were greater than 0.5 indicating a robust assay window. All dose-response data was reduced to a fitted model using a propriety decision tree methodology that is based on the NIH/NCGC assay guidelines (26). Fitted models were assessed using standard Chi Squared test that was also used to determine which model to use. All data was manually reviewed as well. Parameters derived form the models include: IP, the Inflection Point of the curve; Crossing Point (CP), the concentration where the fitted curve crosses -50%; and A_{max}, which is the maximal activity value reached within a model.

For manual cell proliferation assays, cells were seeded in 96-well plates at a density of $10^3 – 10^4$ cell per well in a volume of 100 μl. Media containing compound dilutions or DMSO was added 24 hours thereafter. After 72 hours or 7 days, Cell Titer Glo was added as above. The concentration of compound providing 50% of proliferation inhibition (IC50) was determined using XLfit (idbs).

Generation of stable cell lines with hairpin shRNAs

Hairpin shRNAs were cloned in pLKO-Tet-On vector to produce replication-incompetent lentiviruses as described previously (37). Upon lentiviral infection, stable cell lines were generated by selection with puromycin (1.5 ug/ml) for 5 days. For monolayer cell proliferation assays, cells were seeded in 96-well plates and shRNAs were induced with doxycycline. Cell proliferation was evaluated by methylene blue
staining or Cell Titer Glo as above. For soft agar assays, cell were dispensed in 96-well plates in growth medium containing 0.6% agar on a layer of solidified media containing 1% agar. shRNAs were induced with doxycycline and colony formation was evaluated 14 days post-plating with Resazurin staining. shRNA sequences were as follows:

Genomic analysis of cell lines and primary tumors

A detailed description can be found in Barretina et al. (26), see also (32). In brief, DNA copy number was measured using high-density single nucleotide polymorphism arrays (Affymetrix SNP6.0) and normalized to copy number estimates (log2 ratios; with log2ratio 0 being equal to 2N normalized copies) using a GenePattern pipeline (38) and hg18 Affymetrix probe annotations. Sample-specific and recurrent copy number changes were identified using the GISTIC algorithm (39). mRNA expression levels were obtained using Affymetrix U133 plus 2.0 arrays according to the manufacturer’s instructions. Gene Expression Omnibus: GSE36139

FGFR2-c3 isoform mRNA expression

The primers to specifically monitor expression of the FGFR2-C3 isoform were designed for Taqman assay: FGFR2-F: CTTGGATCGAATTCTCACTCTCAA, FGFR2-R:

CCTGACCAACTTTTCCCCAGTCTTCT, probe: CCAATGAGATCTGAAAGTTT. RT. For internal control, beta-actin primers and probe (ABI Catalog number: 4326315E) were mixed with those of FGFR2. The qPCR thermal cycles were run at: 95°C for 15 seconds, 56°C for 25 seconds and 68°C for 45 seconds using TaqMan® Universal PCR Master Mix (ABI catalog number: 4304437).
FGFR1 Q-PCR from human primary osteosarcoma DNA samples

17 genomic DNA samples from osteosarcomas were acquired from the Peter MacCallum Cancer Institute, Melbourne, Australia (40). The primers used for FGFR1 copy number determination by SYBR green Q-PCR assays were: FGFR1-F: GCATCATAATGGACTCTGTGGTG, FGFR1-r: GTGGTTGATGCTGCCGTACTC. LINE1 was used as the reference gene: LINE-F: AAAGCCGCTCAACTACATGG, LINE-R: TGCTTTGAATGCGTCCCAGAG. The assay was carried out using ABI SYBR Green PCR Master Mix (Cat #: 4309155) as described previously (40).

FGFR2 Q-PCR from human primary tumor DNA samples

113 genomic DNA samples from gastric or esophageal cancer specimens were acquired from Asterand, Indivumed, Cytomyx, and BioServe. 56 samples from gastric tumors were from PrognoGen Biotechnology Co., LTD, Jiangsu, China, who conducted the copy number analysis by Q-PCR according to Novartis protocols. The primers to quantify FGFR2 locus copy number were designed for SYBR green assays: FGFR2-F: GTGTGTCTGGCAAGCTGTGT, FGFR2-R: AGACTCTGGCTTTTCGCTGAG. Quantification using LINE1 as reference gene was performed as described above for FGFR1.

Xenograft rodent models and anti-tumor efficacy studies

The experimental procedures involving animal studies strictly adhered to the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC) guidelines as published in the “Guide for the Care and Use of Laboratory Animals”, and Novartis Corporate Animal Welfare policies. The study with the human primary gastric model GAM033 was conducted at CrownBio International R&D center, Beijing, P.R. China. The studies with the human primary gastric model CHGA010 and the cell line-derived xenograft SNU16 were performed at Novartis facilities. All primary tumor samples were obtained from patients at the time of surgery, with informed written patient
consent, and the study was approved by the local ethical committee. Tumor cells or tumor fragments in the case of primary tumors, were implanted subcutaneously in rodents. Treatment with NVP-BGJ398 or vehicle control started when average tumor size was at least 100 mm3 and tumor volumes were monitored at the indicated times over the course of treatment. Data are presented as means ± standard error of the mean. Comparisons between groups and vehicle control group were done using one-way ANOVA followed by Dunnett’s tests. The level of significance is indicated for each experiment. At the end of treatment, tumors were excised and snap-frozen in liquid nitrogen. Frozen tissues were pulverized using a swing mill (RETSCH MM200) and tumor powder was lysed in standard protein lysis buffer for further Western blot analysis.
Acknowledgements

We thank Joerg Trappe and Juergen Koepler for conducting the biochemical assays, Sandra Molle for technical help with cellular assays, Markus Wartmann and Timothy Smith for the BaF3 profiling assays, Sabine Zumstein-Mecker for technical assistance with genomic PCRs, Ramona Rebmann, Flavia Reimann and Herbert Schmid for technical assistance with in vivo profiling, and Jordi Barretina-Ginesta for proof-reading the manuscript. We also thank Oncotest (GmbH, Freiburg, Germany) and Crown Bioscience Inc (Beijing, P.R. China) for their services with primary human xenografts and Richard Versace for coordinating the contract and being the liaison.
References

32. http://www.broadinstitute.org/ccle

Figure Legends

Figure 1. NVP-BGJ398: structure, complex with FGFR1 and mechanism of action. A. Structure of NVP-BGJ398. B. The crystal structure of NVP-BGJ398 in complex with the tyrosine kinase domain of FGFR1 at 2.8 Å resolution is shown. C. Biochemical FGFR kinase assays: all assays were performed with purified recombinant enzymes under optimized conditions using peptidic substrates and a microfluidic mobility shift readout using the KinaseGlo Luminescent Kinase Assay. The concentrations for ATP were adjusted to the respective Km values of the kinase. D. Cellular FGFR autophosphorylation assays: HEK293 cells expressing the indicated FGFR were incubated with NVP-BGJ398 for 40 min at the indicated concentrations and inhibition of FGFR Tyr-phosphorylation was measured by means of an ELISA assay using a capturing FGFR-specific antibody and the anti-phospho-Tyrosine antibody PY20 coupled to HRP. In C and D the % of phospho-tyrosine inhibition versus dose curves are shown.

Figure 2. NVP-BGJ398 inhibits proliferation of a subset of cancer cell lines. Scatter plot showing IC50 values expressed in uM of NVP-BGJ398 in cell viability assays of cell lines according to cancer type. 5.9% of the cell lines were sensitive to NVP-BGJ398 at concentrations up to 500 nM. Cell lines with the composite “FGFR genetic alterations” feature are indicated in red. Points were jittered horizontally to improve readability.

Figure 3: Predictive modeling of NVP-BGJ398 sensitivity using the CCLE features. Top features of drug response identified by categorical-based predictive modeling. Wilcoxon test or Fisher’s exact test were performed for continuous or discrete features, respectively. The Fold Change or Odds ratio as well as p-values and Benjamini-Hochberg corrected p-values are reported in A. The number between parenthesis for the GeneSets corresponds to the number of genes in the set. In B a heat map for the top five features in the model is shown. Color coding: NVP-BGJ398 response is indicated in dark green for the sensitive cell lines and light green for the insensitive cell lines; dark purple for discrete features;
continuous Z scores for GeneSet expression signatures. P90 and P10 refer to the 90th and 10th percentiles of the genesets scores.

Figure 4. *FGFR1* amplification in breast, lung and osteosarcoma cancer cells is associated with response to NVP-BGJ398. A. Boxplot showing *FGFR1* copy number expressed as log2ratio for the 541 cell lines clustered according to cancer type. B. Scatter plot of breast, lung and osteosarcoma cancer cell lines showing the correlation between DNA copy number and transcript expression of *FGFR1*. Cell lines are colored according to response to NVP-BGJ398. C. Effect of NVP-BGJ398 on FGFR downstream signaling as measured by FRS2 Tyr-phosphorylation and Erk1/2 activation. α-actinin and total Erk1/2 protein levels are shown as a loading control. D. Stable G292 cell lines expressing shRNAs under the control of a doxycycline-inducible promoter were generated via lentiviral infection and puromycin selection. Western blot of FGFR1 showing efficient protein knock down, p-FRS2 and p-Erk inhibition with shRNA1237 and shRNA1425, as compared to two non-targeting shRNAs (NT sh1 and NT sh2). β-tubulin Western blot is shown as a loading control. E and F. Effect of FGFR1-targeting as compared to non-targeting shRNAs on monolayer cell proliferation (E) and anchorage-independent cell growth assays (F) of G292 cells. For monolayer cell proliferation assay, cell growth was monitored at the indicated days after cell seeding, whereas end-point measurements are given for the soft agar assay (day 15 post-cell seeding). G. *FGFR1* copy number in a panel of 17 primary human osteosarcoma samples was analyzed by quantitative real-time PCR. Data are shown as average with SEM (n≥2). Br: breast, Ch: chondrosarcoma, Co: colorectal, En: endometrial, Es: esophagus, Ew: Ewings sarcoma, Ga: gastric, Gl: glioma, HL: hematopoietic and lymphoid tissue, HN: head and neck, Ki: kidney, Li: liver, Lu: lung, Me: melanoma, Ms: mesothelioma, Nb: neuroblastoma, Os: osteosarcoma, Ov: ovarian, Pa: pancreas, Th: thyroid, UT: urinary tract.
Figure 5. **FGFR2 amplification in gastric and colon cancer cell lines is associated with response to NVP-BGJ398.** A. Box-plot showing FGFR2 copy number expressed as log2ratio for the 541 cell lines grouped according to cancer type. Abbreviations are as in Fig. 4B. Scatter plot of gastric and large intestine cancer cell lines showing the correlation between FGFR2 DNA copy number and transcript expression. C. Effect of NVP-BGJ398 on FGFR downstream signaling as measured by FRS2 Tyr-phosphorylation and Erk1/2 activation. α-actinin and total Erk1/2 protein levels are shown as a loading control. D. SNU16 tumor xenograft-bearing nude rats received NVP-BGJ398 at the indicated doses or vehicle for 14 consecutive days (n=6/group). The changes over time in tumor volume are shown. Statistical analysis was performed by one-way ANOVA-Dunnett versus vehicle control (***p < 0.001).

Figure 6. **FGFR2 amplification in primary human gastric tumors predicts for response to NVP-BGJ398.** A. Scatter plot of primary human gastric tumors showing the relationship between FGFR2 copy number and transcript expression (n=49). The gastric tumors CHGA10 and GAM033 with FGFR2 gene amplification (B and C, respectively) were grown subcutaneously in mice. Treatment with NVP-BGJ398 at the indicated doses started when average tumor volume was 150 mm³ – 180 mm³ and proceeded for up to 14 or 25 days. Tumor volume changes over the course of treatment are shown. Statistical analysis was performed by one-way ANOVA-Dunnett versus vehicle control (***p < 0.001).
activation by Western blot. Total FGFR2, Erk1/2 and β-tubulin Western blots were performed to monitor loading.

Figure 7. FGF19 amplification in liver cancer cell lines is associated with response to NVP-BGJ398. A. Scatter plot showing the correlation between FGF19 copy number and transcript expression of FGF19, FGFR4 and β-Klotho (KLB) in liver cancer cell lines. B. Effect of NVP-BGJ398 on FGFR downstream signaling as measured by FRS2 Tyr-phosphorylation and Erk1/2 activation by Western blot after 40 min of FGFR inhibitor treatment. Expression of α-actinin indicates equal loading. C. Effect of 3 different shRNAs targeting FGFR4 in JHH7 cells upon induction with doxycycline, as compared to a non-targeting shRNA: FGFR4 expression and FRS2 Tyr-phosphorylation in doxycycline-induced and non-induced cell lines. Western blot α-actin is shown as a loading control. (D) Effect of FGFR4 downregulation on monolayer cell proliferation assays at day 7 post-cell seeding.
Figure 1
Figure 2
Figure 3

A

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Feature</th>
<th>FoldChange/Odds ratio</th>
<th>Wilcoxon/Fisher's p-value</th>
<th>Wilcoxon/Fisher's adjusted p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alteration</td>
<td>FGFRs</td>
<td>1.41</td>
<td>1.22E-26</td>
<td>3.06E-25</td>
</tr>
<tr>
<td>Mutation</td>
<td>FGFR2</td>
<td>1.09</td>
<td>2.38E-10</td>
<td>2.98E-09</td>
</tr>
<tr>
<td>Mutation</td>
<td>FGFR3</td>
<td>1.04</td>
<td>8.04E-06</td>
<td>6.70E-05</td>
</tr>
<tr>
<td>GeneSet</td>
<td>Development FGF-family signaling (24)</td>
<td>2.29</td>
<td>3.79E-08</td>
<td>6.74E-05</td>
</tr>
<tr>
<td>GeneSet</td>
<td>Inhibition of Hedgehog signaling in medulloblastoma stem cells (33)</td>
<td>2.18</td>
<td>1.36E-06</td>
<td>1.21E-03</td>
</tr>
</tbody>
</table>

B

- NVP-BGJ398 Sensitivity
- FGFRs genetic alterations
 - Mutation FGFR2
- GeneSet Development FGF-family signaling
- Mutation FGFR3
- GeneSet Inhibition of Hedgehog signaling in medulloblastoma stem cells

Legend:
- Insensitive
- Sensitive
- No
- Yes
- P90.00
- Average
- P10.00
Figure 4
Figure 5
Figure 6

A

B

C

D

*One way ANOVA-Dunnett vs. vehicle

Downloaded from cancerdiscovery.aacrjournals.org on June 20, 2017. © 2012 American Association for Cancer Research.
Figure 7

Panel A: Gene expression analysis of FGF19 and FGF4 in Hep3B, HUH7, and JHH7 cell lines. Expression levels are shown in log2 ratio compared to control.

Panel B: Western blot analysis of pFRS2, α-actinin, pErk1/2, and Erk1/2 in Hep3B, HUH7, and JHH7 cell lines treated with DMSO, 5nM, 50nM, and 500nM concentrations of the drug.

Panel C: Barcode reader analysis of FGFR4, pFRS2, and β-actin expression in Hep3B cells treated with or without Dox.

Panel D: Graph showing the comparison of monolayer cell growth between Dox-treated and untreated groups.
FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor

Vito Guagnano, Audrey Kauffmann, Simon Wöhrle, et al.

Cancer Discovery Published OnlineFirst September 20, 2012.