Response to Cabozantinib in Patients with RET Fusion-Positive Lung Adenocarcinomas

Author List (in order):
Alexander Drilon1 drilona@mskcc.org
Lu Wang2 wangl1@mskcc.org
Adnan Hasanovic5 hasanovic@gmail.com
Yoshiyuki Suehara4 sueharay@mskcc.org
Doron Lipson6 dlipson@foundationmedicine.com
Phil Stephens6 pstephens@foundationmedicine.com
Jeffrey Ross6 jross@foundationmedicine.com
Vincent Miller6 vmiller@foundationmedicine.com
Michelle Ginsberg3 ginsberm@mskcc.org
Maureen F. Zakowski2 zakowskm@mskcc.org
Mark G. Kris1 krism@mskcc.org
Marc Ladanyi4 ladanyim@mskcc.org
Naiyer Rizvi1 rizvin@mskcc.org (corresponding author)

Affiliations:
1Department of Medicine Thoracic Oncology Service, 2Department of Pathology, 3Department of Radiology, 4Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
5Department of Pathology, Lenox Hill Hospital, New York, NY
6Foundation Medicine, Cambridge, MA

Running Title: Response to Cabozantinib RET Fusion Lung Adenocarcinomas
Submission Type: Research Brief
Corresponding Author: Naiyer Rizvi MD
Thoracic Oncology Service, Department of Medicine
Memorial Sloan-Kettering Cancer Center
1275 York Avenue, New York, NY 10065
Tel: 646-888-4204, Fax: 646-888-4261, e-mail: rizvin@mskcc.org

Keywords: cabozantinib, RET, adenocarcinoma, lung, TRIM33-RET
Word Count 2,573 (main article, max 3,500), 147 (abstract, max 150), 50 (statement of significance, max 50)
Tables none
Figures 3 (uploaded separately)
Financial Support: International Association for the Study of Lung Cancer Fellowship Award (Alexander Drilon MD)
Disclosure Statement: Doron Lipson, Phil Stephens, Jeffrey Ross - employees, Foundation Medicine, Inc.; Vincent Miller – employee and stockholder, Foundation Medicine, Inc.; Mark Kris – advisory board/consultant, Pfizer, Inc.
Abstract

The discovery of RET fusions in lung cancers has uncovered a new therapeutic target for patients whose tumors harbor these changes. In an unselected population of non-small cell lung cancers (NSCLCs), RET fusions are present in 1-2% of cases. This incidence rises substantially, however, in never-smokers with lung adenocarcinomas that lack other known driver oncogenes. While pre-clinical data provide experimental support for the use of RET inhibitors in the treatment of RET fusion-positive tumors, clinical data on response are lacking. We report preliminary data for the first three patients treated with the RET inhibitor cabozantinib on a prospective phase 2 trial for patients with RET fusion-positive NSCLCs (NCT01639508). Confirmed partial responses were observed in two patients, including one harboring a novel TRIM33-RET fusion. A third patient with a KIF5B-RET fusion has had prolonged stable disease approaching 8 months (31 weeks). All three patients remain progression-free on treatment.

Statement of Significance

Driver oncogene discovery in lung cancers has dramatically changed today’s therapeutic landscape. This report of the activity of cabozantinib in RET fusion-positive disease provides early clinical validation of RET fusions as drivers in lung cancers and suggests that RET inhibition may represent a new treatment paradigm in this molecular cohort.
Introduction

Recurrent gene fusions have emerged as important oncogenic drivers of a variety of hematological and solid tumor malignancies (1). In non-small cell lung cancers, rearrangements in ALK and ROS1 are present in at least 5% of lung adenocarcinomas (2, 3). The corresponding fusion proteins contain an intact tyrosine kinase domain fused to upstream partners that often provide dimerization domains (4, 5). Constitutive kinase activity results in activation of downstream pathways involved in tumor cell growth and proliferation. ALK and ROS1 fusions are non-overlapping with other known drivers in lung cancer such as mutations in KRAS and EGFR, and are more commonly found in adenocarcinomas from never-smokers (2,6). Their role as potent oncogenic drivers is underscored by the dramatic clinical responses seen with crizotinib, a tyrosine kinase inhibitor of ALK and ROS1, in patients that harbor these rearrangements (7, 8).

Activation of RET is a mechanism of oncogenesis in medullary thyroid carcinomas where both germline and sporadic activating somatic mutations are prevalent (9). Gene rearrangements involving RET on the other hand have been characterized most extensively in papillary thyroid carcinomas, particularly those discovered in the wake of significant radiation exposure, such as in survivors of the Chernobyl nuclear disaster. The incidence of RET fusions in papillary thyroid carcinomas rises to 60-80% in the latter (10, 11).

Ju et al reported the first case of a RET fusion in lung cancer in 2011 (12). The KIF5B-RET fusion was discovered by whole genome and transcriptome sequencing of
tumor tissue from a never-smoker with advanced adenocarcinoma of the lung. Several independent groups have since reported the detection of these fusions, uncovering a new molecular subset of lung cancers sharing remarkably similar features with rearrangements of *ALK* and *ROS1* (13-16). Oncogenic potential has been demonstrated *in-vitro* in transfected NIH3T3 and Ba/F3 cells and RET inhibition with vandetanib, sunitinib, and sorafenib resulted in loss of cell viability and abrogation of the transformed phenotype suggesting that RET might be a druggable target (14-16). However, data establishing the utility of RET inhibitors in the clinic are lacking.

**Results**

Given the increased frequency of *RET* fusions in tumors from never-smokers and their mutual exclusivity with known driver oncogenes (15), we focused on screening an enriched cohort of never-smokers (<100 lifetime cigarettes) with advanced “pan-negative” non-squamous non-small cell lung cancers for *RET* gene rearrangements via fluorescence *in-situ* hybridization (FISH). Pan-negative status was defined as the absence of mutations in *EGFR, KRAS, NRAS, BRAF, HER2, PIK3CA, MEK1*, and *AKT* and fusions of *ALK* and *ROS1*.

A total of thirty-one patients with pan-negative lung adenocarcinomas were prospectively identified after extensive genotyping. *RET* fusions were found in five out of thirty-one patients (16%, 95% CI [3%-29%]) over the course of ten months. No distinct histologic features were shared between the five cases (adenocarcinoma morphology varied: one patient with papillary features, one with solid morphology, one with predominantly papillary features but with solid and lepidic components, one with
micropapillary and solid morphology, and one with poorly-differentiated histology). Sites of metastases varied significantly as well. Average and median overall survival from diagnosis for these patients were 30 and 27 months, respectively (with four of five patients currently alive). Within the limits of a small series, these outcomes were more favorable than the median survival of 12 months of metastatic unselected non-small cell lung cancer patients and closer to that seen in EGFR-mutant patients which range from 20-30 months across several large randomized studies (17).

Screening was performed to determine eligibility for a prospective, single-institution, open-label, phase 2 study of cabozantinib (XL-184) for RET fusion-positive lung carcinomas initiated in July of 2012 (ClinicalTrials.gov number NCT01639508). Cabozantinib, a multi-tyrosine kinase inhibitor and potent inhibitor of RET, was chosen based on the observation that the drug was most effective at inhibiting proliferation in RET-PTC papillary thyroid cancer cell lines (IC$_{50}$ 0.06 µM) compared to vandetanib, sunitinib, and axitinib (18). Of the five patients that tested positive for a RET fusion, one was ineligible for study participation due to a declining performance status and eventually passed away. One patient only recently tested positive and is to be offered study enrollment. The three remaining patients were eligible for treatment and subsequently enrolled onto this protocol. Baseline burden of disease was low for all three cases.

A novel TRIM33-RET fusion was discovered in a 41 year-old Caucasian female never-smoker with no history of radiation exposure who presented in June of 2010 with decreased visual acuity in the right eye. Retinal metastases were noted on ophthalmologic evaluation. In addition, she was found to have a left lower lobe mass
and metastatic disease to the pleura and left-sided axillary and supraclavicular lymph nodes. No thyroid masses were noted on computed tomography or positron-emission tomography imaging. A biopsy of a supraclavicular node revealed metastatic adenocarcinoma with papillary morphology (Figure 1A). Immunohistochemical stains were positive for TTF-1 and napsin-A and consistent with a lung primary.

A RET fusion was present by FISH (Figure 1B) but negative for KIF5B-RET. Next generation sequencing demonstrated a TRIM33-RET fusion (Figure 1C) involving exon 14 of TRIM33, and RET exon 12 which is in-frame. No evidence of MET amplification or mutation was found.

The patient was enrolled onto our phase 2 study of cabozantinib after progression on 2 prior lines of therapy. Cycle 1 toxicities included grade 2 dysgeusia, and grade 1 mucositis, diarrhea, and fatigue; subclinical hypothyroidism was managed with thyroid hormone replacement. Follow-up imaging performed after four and twelve weeks of therapy revealed a confirmed partial response with a 66% decrease in measurable disease in the lungs and pleura by RECIST v1.1 (Figure 2A). A follow-up ophthalmologic examination revealed partial regression of the patient’s bilateral retinal metastases along with resolution of episodic mild blurring of vision. While sclerotic areas of bony metastasis to the upper sacrum and posterior right ilium were not measurable by RECIST, treatment was accompanied by a clinical response to therapy with the disappearance of tumor-related sacral pain. The patient was not previously treated with a bisphosphonate or anti-RANK ligand therapy. She has been on trial now for five months (20 weeks) and remains progression-free and on active therapy.
The second patient was a 75 year-old African-American female never-smoker who was RET fusion-positive by FISH and reverse-transcriptase polymerase chain reaction (RT-PCR) for KIF5B-RET. She was initially treated with sequential chemotherapy and radiation for unresectable stage IIIA (T4N1M0) poorly-differentiated lung adenocarcinoma. She was subsequently found to have recurrent, metastatic disease as evidenced by the development of enlarging bilateral pulmonary nodules in the absence of distant disease. She was treated with cabozantinib on-protocol. Cycle 1 toxicities included grade 3 fatigue requiring cabozantinib dose reduction to 40 mg/day and grade 1 transaminase elevation. Grade 3 proteinuria was a late toxicity requiring further dose reduction to 20 mg/day. Despite the need for dose reductions, the patient had clinical improvement in cough and shortness of breath and a partial response to therapy at four weeks (Figure 2B). This was confirmed at twelve weeks with a decrease in disease burden by 32% by RECIST v1.1. The patient remains progression-free on therapy at four months (16 weeks).

The third patient was a 68 year-old Caucasian female never-smoker positive for a RET fusion by FISH. She initially underwent a right upper lobectomy for a stage I lung adenocarcinoma. She was thereafter found to have metastatic mixed-subtype adenocarcinoma (predominantly papillary with lepideric and solid patterns) with multiple bilateral pulmonary nodules and no evidence of distant disease. She began treatment with cabozantinib after progression of disease on first-line chemotherapy. Cycle 1 toxicities included grade 3 hypertension requiring dose reduction to 40 mg/day of cabozantinib, grade 2 fatigue, and grade 1 skin toxicity. At four weeks on-study she was
noted to have stable disease (Figure 2C) that has since been maintained clinically and radiographically approaching eight months (31 weeks) into treatment.

Discussion

Over the last five years, kinase fusions in lung cancers have drawn much attention as targetable driver events. The efficacy of crizotinib for ALK- and ROS1-rearranged lung cancers highlights how the availability of small molecules with multi-kinase activity has greatly facilitated this effort. Interestingly, while crizotinib began early-phase testing in 2005 as a MET inhibitor, the discovery of EML4-ALK fusions (4, 5) in 2007 heralded the demonstration of the activity of crizotinib in ALK fusion-positive lung cancers and subsequent FDA approval for this indication in 2011 (8). Activity of the drug in ROS1-rearranged lung cancer was reported in early 2012 (2). Despite this progress, the timeline between the discovery of genetic driver alterations and the demonstration of activity and eventual approval of a corresponding targeted agent remains a lengthy process that is typically measured in years. This prospective trial of cabozantinib was initiated in July of 2012 within only a few months of the discovery of RET fusions reported in late 2011. The latter illustrates how a rapid bench to bedside process allows for accelerated drug development when coupled with a comprehensive molecular analysis of tumor specimens.

The clinical data presented in this series represent the first reports of response to a RET inhibitor in patients on a prospective, molecularly-enriched trial for RET fusion-positive lung cancers. For both responders in this series, the short time frame of clinical and radiographic improvement relative to drug initiation is comparable to the rapid
responses observed with erlotinib and crizotinib in EGFR-mutated and ALK-rearranged lung cancers, respectively. While these findings are highly encouraging, completion of this trial will provide data on long-term follow-up and response in a larger cohort of individuals and will be informative as to the durability and overall efficacy of this approach. Furthermore, taking into account the paradigms of resistance demonstrated in other fusion-positive lung cancers (19), our protocol has recently been amended to include repeat biopsies on progression for the evaluation of potential resistance mechanisms. Cabozantinib is a multi-tyrosine kinase inhibitor with effects on VEGFR2 likely explaining the off-target effects of hypertension and proteinuria seen in our patients. These toxicities have been manageable with dose modifications and anti-hypertensive medication and all patients continue to both tolerate treatment and maintain their responses or stable disease clinically and radiographically.

The process of identification of patients with RET fusion-positive disease was expedited at our institution by the decision to perform screening in an enriched cohort of individuals who had already been tested for the presence of other known driver mutations. While the overall prevalence of RET fusions rises from 1-2% in an unselected population of non-small cell lung cancers to 6% in patients with tumors that are pan-negative for other known driver mutations (15), our preliminary results show that the rate of RET rearrangements in tumors from pan-negative never-smokers is even higher at 16%. If multiplex genotyping for all known drivers is not feasible, current and future testing for these rearrangements will benefit from focusing on this clinically- and molecularly-enriched population of individuals.
Wang and colleagues recently published the results of RET fusion gene screening of 936 patients with surgically-resected NSCLC (20). Patients with RET fusion-positive lung adenocarcinomas were more likely to be younger (age ≤ 60) never-smokers with more poorly differentiated tumors of the solid subtype. Although ALK IHC has been shown to be useful in detection of ALK rearrangements (21), Wang et al found no statistical difference in RET IHC staining between RET fusion-positive and -negative lung adenocarcinomas. Our experience (using RET antibodies from Epitomics (14) and Vector Labs (15), unpublished observations, A.H., M.L.) also has been that RET IHC is not sufficiently reliable at present for diagnostic purposes.

This report also represents the first description of the TRIM33-RET fusion in lung cancer. Like ALK and ROS1 rearrangements, RET fusions occur with different partners. KIF5B is the most common of these and is present in approximately 90% of the rearrangements reported to date, with CCDC6 and NCOA4 accounting for the remaining 10% (12-16, 20). All three fusions are generated via an inversion of the short and long arms of chromosome 10. TRIM33, also known as RFG7 or TIF1, is a member of the transcription intermediary factor 1 family that participates in the control of cellular differentiation (22). TRIM33 has previously been reported as a fusion partner of RET in radiation-associated papillary thyroid carcinomas (23).

With TRIM33-RET, the 5’ portion of RET is replaced by a gene encoding a coiled-coil domain resulting in dimerization and ligand-independent activation of the RET tyrosine kinase. These structural features are also seen in KIF5B-RET, CCDC6-RET, and NCOA4-RET (Figure 3). The history of never-smoking and the absence of concurrent driver abnormalities in our patient is similarly consistent with the profile of
patients with \textit{RET} fusions. The \textit{TRIM33-RET} fusion is not likely to be unique to this patient as another \textit{TRIM33-RET} fusion-positive case has recently been detected in The Cancer Genome Atlas lung adenocarcinoma project (24). The continued identification of \textit{RET} fusion partners in tumors from patients on this prospective trial should provide preliminary data on the potential heterogeneity of response to RET tyrosine kinase inhibition between molecular subtypes.

In conclusion, our series of treatment responses to cabozantinib in patients with \textit{RET} fusion-positive tumors provides the first clinical data for a new target and drug treatment paradigm in lung cancers. Cabozantinib administration was feasible and toxicities were manageable. \textit{RET} fusions represent a new addition to the growing list of actionable drivers in lung cancers and merit continued investigation.

\textbf{Methods}

Genotyping was performed via a mass-spectrometry Sequenom platform for 91 point mutations in \textit{EGFR}, \textit{KRAS}, \textit{NRAS}, \textit{BRAF}, \textit{HER2}, \textit{PIK3CA}, \textit{MEK1}, and \textit{AKT}, multiplex sizing assays for insertions and deletions in \textit{EGFR} exons 19 and 20 and \textit{HER2} exon 20, and FISH break-apart assays for \textit{ALK} and \textit{ROS1} (25). \textit{RET} fusion FISH assay was performed via a dual-probe FISH break-apart test. Based on an upper level of split signals for break-apart probes on normal formalin-fixed paraffin-embedded tissue sections of approximately 5\%, we set the cutoff for scoring the \textit{RET} FISH assay as positive at 10\% of cells with split signals or isolated 3' signals (red) (13). \textit{KIF5B-RET} testing was performed via RT-PCR. Next generation sequencing of the entire coding sequence of 182 cancer-related genes plus 37 introns of 14 genes commonly
rearranged was performed in a CLIA-certified laboratory (Foundation Medicine, Cambridge, MA) (15).

For this phase 2 study of cabozantinib in advanced, RET fusion-positive lung cancers, inclusion criteria are as follows: patients with pathologic or cytologic evidence of non-small cell lung cancer, clinical stage IV or recurrent/medically inoperable disease, a Karnofsky performance status of >70%, a life expectancy of >12 weeks, adequate hematologic, renal, and hepatic function, measurable disease, and positive testing for a RET fusion via RT-PCR or FISH.

The primary endpoint of the trial is objective response at 12 weeks via RECIST v1.1 (26). Secondary endpoints include progression-free survival, overall survival, and grade 3 or 4 treatment-related adverse events. Patients receive cabozantinib at 60 mg orally daily in 28-day cycles until disease progression or unacceptable toxicity. Imaging studies are performed at baseline, four weeks, and every eight weeks thereafter. A Simon two-stage minimax design is used to test the null hypothesis of a 10% response rate against the desired alternative of a 30% response rate, with a type I error of 10% and a power of 90%. In the first stage of this study, sixteen evaluable patients are to be accrued. If responses are noted in two or more patients, nine additional patients will be enrolled for a total of twenty five evaluable patients. The drug will be deemed worthy of further study if a total of five responses are seen in this population.
Acknowledgements

None

Grant Support

International Association for the Study of Lung Cancer (IASLC) Fellowship Award: Alexander Drilon

Disclosures

Doron Lipson, Phil Stephens and Jeffrey Ross are employees of Foundation Medicine, Inc. Vincent Miller is an employee and stockholder of Foundation Medicine, Inc. Mark Kris has an advisory/consultant role for Pfizer, Inc.
References


23. Klugbauer S, Rabes HM. The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas. Oncogene 1999;18:4388-93.


Figure Legends

**Figure 1:** A. Photomicrograph of a supraclavicular lymph node biopsy showing a lung adenocarcinoma with papillary morphology. B. A positive RET FISH breakapart test. Split green and red signals indicate the presence of a RET fusion. Probes were designed as previously published (13). C. The presumptive t(1;10)(p13;q11.2) translocation places TRIM33 exons 1-14 upstream of RET exons 12-18, generating an in-frame TRIM33-RET fusion gene.

**Figure 2:** A1. Baseline chest CT of the first patient with TRIM33-RET showing paramediastinal and pleural-based nodularities in the left upper lobe. A2. Repeat imaging after four weeks of therapy revealing the disappearance of paramediastinal disease and a significant reduction of pleural-based disease. B1. Chest CT of the second RET fusion-positive patient showing two nodules in the right lower lobe. B2. Decrease in both size and solid components of both lesions at four weeks. C1. Baseline imaging of the third patient with KIF5B-RET showing small bilateral pulmonary nodules. C2. Stable disease at four weeks. All responses have been confirmed at twelve weeks and have since been maintained clinically and radiographically. Baseline disease burden was relatively low for all three cases.

**Figure 3:** RET fusions reported in the literature are depicted including major recurrent KIF5B-RET fusions, CCDC6-RET, NCOA4-RET (14-16, 20), and the novel TRIM33-RET. All fusions encode an intact RET kinase domain as shown in blue. Regions encoding coiled-coil domains that mediate dimerization are shown in red (the N-terminal
*NCOA4* coiled-coil domain is not well defined). Part of the RET transmembrane domain encoded by *RET* exon 11 is shown in purple.
FIGURE 1
FIGURE 3

KIF5B-RET fusions

CCDC6-RET

NCOA4-RET

TRIM33-RET
Response to Cabozantinib in Patients with RET Fusion-Positive Lung Adenocarcinomas

Alexander Drilon, Lu Wang, Adnan Hasanovic, et al.

Cancer Discovery Published OnlineFirst March 26, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/2159-8290.CD-13-0035

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.