Addressing genetic tumor heterogeneity through computationally predictive combination therapy

Boyang Zhao1,2, Justin R. Pritchard2,3,*, Douglas A. Lauffenburger2,3,4,* and Michael T. Hemann2,3,*

1Computational and Systems Biology Program, 2The David H. Koch Institute for Integrative Cancer Research, 3Department of Biology, and 4Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

*Corresponding authors: Michael Hemann, Massachusetts Institute of Technology, 77 Massachusetts Ave., 76-361B, Cambridge, MA 02139. Phone: (617) 324-1964; Email: hemann@mit.edu; and Douglas Lauffenburger, Massachusetts Institute of Technology, 77 Massachusetts Ave., 16-343, Cambridge, MA 02139. Phone: (617) 252-1629; Email: lauffen@mit.edu; and Justin Pritchard, Present address: Ariad Pharmaceuticals, 26 Landsdowne St., Cambridge, MA 02139. Phone: (617) 503-7511; Email: justin.pritchard@ariad.com.

Running Title: Using combination therapy to target tumor heterogeneity

Funding was provided by Integrative Cancer Biology Program Grant U54-CA112967-06 (to M.T.H. and D.A.L.). B.Z. is supported by the NIH/NIGMS Interdepartmental Biotechnology
Training Program 5T32GM008334. This work was also supported in part by the Koch Institute Support (core) Grant P30-CA14051 from the National Cancer Institute.

The authors declare no conflicts of interest related to this manuscript.
ABSTRACT
Recent tumor sequencing data suggests an urgent need to develop a methodology to directly address intra-tumor heterogeneity in the design of anti-cancer treatment regimens. We use RNA interference to model heterogeneous tumors, and demonstrate successful validation of computational predictions for how optimized drug combinations can yield superior effects on these tumors both in vitro and in vivo. Importantly, we discover here that for many such tumors knowledge of the predominant subpopulation is insufficient for determining the best drug combination. Surprisingly, in some cases the optimal drug combination does not include drugs that would treat any particular subpopulation most effectively, challenging straightforward intuition. We confirm examples of such a case with survival studies in a murine pre-clinical lymphoma model. Altogether, our approach provides new insights concerning design principles for combination therapy in the context of intratumoral diversity, data that should inform the development of drug regimens superior for complex tumors.

STATEMENT OF SIGNIFICANCE
This study provides the first example of how combination drug regimens, using existing chemotherapies, can be rationally designed to maximize tumor cell death, while minimizing the outgrowth of clonal subpopulations.
INTRODUCTION

Recent high-throughput sequencing and genomic hybridization studies have revealed substantial intratumoral heterogeneity in cancer patients (1,2). Sections of single biopsies as well as biopsies taken from primary and metastatic regions revealed a highly complex nonlinear branching clonal evolutionary model as the basis for cancer progression and intratumoral diversity (3–11). Matched diagnostic and relapsed patient samples have also revealed the dynamic nature of a heterogeneous tumor, with the dominant subpopulation at relapse often originating from a minor pre-existing subclone (12–16). As such, spatial and temporal intratumoral heterogeneity presents a fundamental challenge for the rational design of combination chemotherapeutic regimens, which remain the primary treatment for most systemic malignancies.

There have been attempts to study heterogeneity and optimal therapeutic strategies. Many have been theoretical – on examining drug scheduling with generic single drugs or drug combinations on a heterogeneous population containing a sensitive and a resistant subpopulation (17–20). Some of these scheduling strategies have been followed by experimental validations in vitro (21,22). However, a rational approach to design drug combinations to minimize the effects of intratumoral heterogeneity in a tractable model with experimental validation in vitro and in vivo in preclinical models has been lacking.

Here we apply a computational optimization algorithm constructed on the experimental foundation of known single-drug efficacies for genetically variant cell subpopulations to predict how drug combinations will affect heterogeneous tumors. The most crucial assumption inherent in our algorithm has been demonstrated in our recent work: that commonly used combinations of chemotherapeutics act as linear averages of each component drug against homogenous tumors (23). For example, a two drug combination of drug A and drug B creates a combination selective pressure that resembles a simple weighted sum of A + B. Integration of this experimental foundation with our mathematical framework offers an advance in
predictive understanding of how drug combinations influence the fate of heterogeneous tumors, which we successfully validated both in vitro and in vivo.

RESULTS

RNAi-based approach to model heterogeneity and drug combination optimization

Our experimental system derives from the conceptual premise that tumors undergo branched clonal evolution with deregulated oncogene expression and/or tumor suppressor loss providing a basis for transformation, and additional genetic changes accumulating during tumor progression. These additional mutations underlie the development of a heterogeneous tumor population (Fig. 1A, as a simplified example). An attractive approach to model this heterogeneity in a tractable system amenable to systematic study is the use of an RNAi-based approach (Fig. 1B). Knockdown of specific genes of interest can approximate the loss of function that occurs in tumors, with the combination of multiple shRNA-expressing subpopulations modeling the diversity present in a heterogeneous tumor. We have previously used an RNAi-based approach to elucidate mechanisms of single and combination drug action (23,24) using Eμ-myc; p19Arf−/− lymphoma cells. Given this dataset of known therapeutic effects of cytotoxic and targeted therapies (Table S1) on individual shRNA-expressing subpopulations, we hypothesized that we could computationally predict superior versus inferior treatment strategies for minimizing subpopulations within a heterogeneous tumor (Fig. 1C).

Our mathematical algorithm is based on integer programming, which identifies the set of drugs that should be present in order to accomplish an aspired goal, or ‘objective function’. In the first manifestation here, the defined goal is to minimize outgrowth of specific tumor subpopulations within a known heterogeneous population (see Material and Methods and Supplementary Text for mathematical formulations). The rationale for this goal as a first test of our hypothesis is that current clinical approaches tend to focus on targeting the predominant tumor subpopulation, and the outgrowth of
originally minor subpopulations representing resistance to that treatment is at present a daunting clinical problem.

We used this algorithm, in combination with a previously published data set on drug-genotype interactions (23,24), to identify the most-effective two-drug combinations sampled from a large number of three-component heterogeneous tumor populations (tumors that are comprised of two RNAi-produced sub-populations plus the parental sub-population) (Fig. S1). We then systemically simulated all possible combinations of three-component population and determined the most and least effective two-drug combinations (Table S2). In many cases, the optimal therapy was the same independent of whether we examined the entire heterogeneous population or just the predominate subpopulation. However, there was also a subset of population compositions where the solutions differ (Fig. S2). This suggests that for some heterogeneous tumor populations, we cannot derive the optimal therapy based on solely the predominant subpopulation alone. One such example was a three-component population consisting of the parental Eμ-Myc; p19Arf−/− lymphoma (no shRNA) and subpopulations expressing either a Chk2 (a DNA damage checkpoint regulator) or a Bok (a Bcl2-family cell death mediator) shRNA. The optimal treatment for this tumor was a vincristine (Vin) plus SAHA combination, whereas the worst was an irinotecan (IRT) plus chlorambucil (CBL) combination. Interestingly, if only shChk2 or shBok populations were examined alone, the predicted optimal combination was neither Vin/SAHA nor IRT/CBL (Fig. 1D). Furthermore, SAHA was not the best single-agent for either shChk2 or shBok alone, but becomes part of an optimal drug combination in a heterogeneous population containing both shChk2 and shBok. This was also the case in examining lymphomas containing an alternative population composition of parental/shChk2/shBim. Thus, consideration of a heterogeneous tumor in its entirety can result in nonintuitive optimal drug combinations, sometimes containing drugs that are not the best single-agent for any subpopulations.

In vitro validation of drug combination on heterogeneous tumor

In vitro validation of drug combination on heterogeneous tumor
To experimentally validate these predictions, we used an *in vitro* fluorescence-based competition assay (Fig. 2A-B and Fig. S3), in which a mixture of parental lymphoma cells and shRNA-expressing subpopulations were exposed to combinations of drugs at controlled doses. Specifically, the drug combinations were dosed such that each drug in the combination contributed equally to a cumulative LD80-90 combination cell killing. GFP- or Tomato-labeled subpopulations enabled us to track the enrichment or depletion of individual subpopulations in the population mixture. Here, we observed that Vin/SAHA effectively maximized the therapeutic response in shBok-containing tumor cells (i.e. enhanced the depletion of shBok-infected cells) while minimizing the selective outgrowth of populations of tumor cells expressing shChk2 (Fig. 2C, Fig. S4). In contrast, IRT/CBL strongly selected for the resistant shChk2 subpopulation, and the parental subpopulation remained sensitive to both combinations. Combination treatment with actinomycin D (ActD)/Erlotinib or Vin/CBL, which were predicted to be optimal treatments if shChk2 or shBok subpopulations were considered individually, were less effective than Vin/SAHA. These predictions were also validated in a different tumor with a distinct population composition (Fig. 2D, Fig. S4). Taken together, these data suggest that combination therapies can be tailored to effectively minimize the effects of a heterogeneous tumor population given some knowledge of the composite subpopulations and their responses to single drugs.

As tumors continuously evolve with the acquisition of new mutations, forming more complex hierarchical structures, we wondered whether we could extend our simple model to account for another layer of complexity. Here, we performed an additional knockdown in our existing subpopulations to form a heterogeneous population consisting of parental, shChk2 (alone), shBok (alone), and shChk2 plus shBok. We then examined the response of these cells to the same four combination therapies and observed that the results were consistent with our predictions, with the optimal therapy still Vin/SAHA (Fig. 2E and F, Fig. S4). We can also apply principal component analysis as a method for dimensionality reduction and visualization on the resulting population, as we have done previously for single populations (25,26). We observed that the optimal drug combination effectively impacts the population composition towards the
goal of eliminating the shRNA subpopulations (Fig. S5). Thus, for this limited set of tested cases, we have demonstrated successful prediction of effective therapeutic strategy design, by computational integration of the individual drug effects across known target subpopulations, which can produce non-intuitive outcomes.

In vivo validation of drug combination on heterogeneous tumor in preclinical lymphoma model

We next sought to validate our predictions in vivo. The murine Eμ-Myc lymphoma model (27,28) allows us to perform ex vivo transduction of tumor cells followed by transplantation into syngeneic immunocompetent recipient mice (Fig. 3A). Lymph node, thymus, and spleen are among several sites of tumor dissemination in both donor and recipient tumor-bearing mice. Using this model, we observed substantial intratumoral heterogeneity by ex vivo whole mouse fluorescence imaging (Fig. 3B and Fig. S6). However, when we then analyzed individual lymph nodes, thymus, and spleen of untreated mice using flow cytometry, we observed heterogeneity at the level of individual tumors (Fig. S7). To validate the therapeutic effects in vivo, we determined the optimal dose for each of the individual drugs to ensure there was comparable therapeutic effect on parental tumors from each component drug in the combination (Fig. S8). Using these doses, combination treatment with Vin/SAHA successfully minimized the emergence of any tumor subpopulation, while IRT/CBL enriched significantly for the intrinsic resistant shChk2 subpopulation (Fig. 3C-D). Since our combination therapies were optimized to minimize specific tumor subpopulations relative to the parental lymphoma cells, we also examined the tumor-free survival of mice with heterogeneous lymphoma tumor normalized to that of mice with homogeneous lymphoma tumor. Upon treatments, Vin/SAHA improved the relative tumor-free survival compared to IRT/CBL (Fig. 3E). Taken together with our in vitro results, these data suggest that we can apply a mathematical optimization approach to predict optimal therapeutic strategies for minimizing the emergence of genetically defined tumor component populations and impact the tumor-free survival of mice when presented with a heterogeneous instead of homogeneous tumor.
We further explored the comparison between Vin/SAHA and IRT/CBL on relative tumor-free survival in shChk2/shBok/parental tumors across wide ranges of subpopulation proportions. With a three-component population, all tumor compositions can be represented on a ternary plot, with each corner corresponding to a homogeneous population of a single component and any point within the plot corresponding to some specific composition mixture of the three components. We experimentally determined the tumor-free survival of mice with homogeneous tumor containing one of the three subpopulations for treatment with either of the combination regimens (Fig. S9 and S10). Using this information, we generated a descriptive model showing the efficacy difference between Vin/SAHA and IRT/CBL across all possible subpopulation proportions. We observed that introducing heterogeneity (shChk2 and/or shBok subpopulations) into the parental tumor, Vin/SAHA increasingly improves the relative tumor-free survival (Fig. 4A). We can also derive the comparison in terms of absolute tumor-free survival, to inform us of tumor compositions for which Vin/SAHA dominates over IRT/CBL (Fig. S11). In both cases, an example heterogeneous tumor composition (used for the competition assays above), which was not used in generating the model approximates well with the prediction described by the model.

Since our optimization model predicts the effect of drug combinations on the evolution of tumor composition, and our descriptive model approximates the efficacy difference between treatments at specified tumor composition, we can combine these models to examine drug efficacy at multiple time points upon single or consecutive drug treatments. While both drug combinations have minimal effects on changes of tumor composition with empty vector controls (Fig. 4B), the drug treatments predictably affected the heterogeneous tumor (Fig. 4C) – landing at tumor compositions at relapse for which we can also now estimate the therapeutic efficacy comparisons for the next round of treatment. As pre-existing subclones prior to treatment may exist at extremely low frequencies in clinically observed cases, we also examined theoretically the dynamics of tumor heterogeneity with multiple rounds of combination therapy at different initial tumor compositions, including extremes such as 0.1% pre-existing shChk2 and shBok. Sequential IRT/CBL strongly selected for the shChk2 subpopulation whereas Vin/SAHA had less
selective pressure on the subpopulations (Fig. S12). Thus, based solely on tumor heterogeneity dynamics (assuming no new induced resistance mechanisms), Vin/SAHA remains as a superior effective drug combination whereas after several rounds of IRT/CBL, the effectiveness of this drug can be dramatically reduced due to the outgrowth of shChk2 in becoming the dominant subpopulation.

Taken together, knowledge of the in vitro efficacy of single drugs on individual subpopulations has allowed us to optimize for a drug combination that minimizes the effects of heterogeneity and improves relative tumor-free survival. We combined additional in vivo efficacy data of the chosen drug combinations on individual subpopulations to approximate the in vivo therapeutic responses over wide ranges of tumor subpopulation proportions in a heterogeneous tumor. These two models enable the tracking of tumor trajectories upon single and multi-course treatments and examination of the effectiveness of subsequent treatment strategies at relapse(s).

DISCUSSION
Starting with Peter Nowell’s seminal 1976 paper on the clonal evolution of cancer (29), we have gradually gained the ability to monitor and deconvolute the step-wise alterations in cancer evolution that underlie intratumoral heterogeneity. Not only are distinct tumor sub-clones found to coexist within the same tumor regions (30,31), but analyses of biopsies in primary and metastatic tumor sites further suggests that metastatic sub-clones originate from a non-metastatic parental clone in the primary tumor (3–11). Additional changes at the post-transcriptional and epigenetic level can potentially further diversify a tumor population with functional variations (32,33). This heterogeneous tumor population is also dynamic, as has been shown in the responses to standard combination chemotherapeutic regimens, with pre-existing minor sub-clones expanding to dominate at relapse (12–16). As such, current combination regimens can have unpredictable and/or unintended consequences on the resulting tumor diversity. The original rationale for the use and choice of combination therapies has been primarily to increase the effective and tolerable drug dose, while minimizing resistance (34–38). In theory, this leads
to more cancer cell killing and decreases the likelihood that a resistant clone will compromise therapeutic
success. However, in light of recent studies showing the extent of intratumoral variation and its clinical
implications, it is paramount to incorporate tumor diversity and the expected evolutionary trajectories into
rational drug combination design to achieve predictable tumor response, reduce chances of relapse, and
prolong patient survival. Our joint theoretical and experimental approach suggests that we can derive drug
combinations that can minimize outgrowth of specific subpopulations in a given heterogeneous tumor
while enhancing tumor-free survival in mice – provided we know some knowledge of the tumor
composition and the response of component subpopulations to single drugs.

Here we used the \(E_{\mu}-\text{Myc} \) lymphoma mouse model as the basis for our computational modeling and
experimental validations. The presence of \(p19^{\text{Arf/}} \) in this model may remove selective pressure on specific
mutations that arise during tumor progression and in response to treatment. Thus, the broad applicability
of this approach to other cancer models remains to be seen. Nevertheless, the \(E_{\mu}-\text{Myc} \) lymphoma model is
an extremely well-characterized preclinical mouse model and thus a good initial system to tractably
address the rational design of drug regimens in the context of genetically diverse tumor. Furthermore, \(E_{\mu}-
\text{myc} \) models a defining translocation observed in Burkitt’s lymphoma. Previous targeted molecular
analyses on different sites of the same patient and matched sample at diagnosis and relapse revealed
shared \(\text{Myc} \) breakpoints and \(\text{Bcl-6} \) mutations, but differential \(p53 \) and \(\text{Myc} \) mutations across the different
samples, suggesting clonal evolution spanning across different tumor sites and in response to treatment
(39).

The complexity of heterogeneous tumors found in patients undoubtedly complicates applications of this
approach. However, our studies highlight basic principles towards rational drug combination design. For
example, as was the case for Vin/SAHA in this tumor model, a therapeutic strategy may involve finding a
set of drugs that, when combined, maximizes the therapeutic synthetic lethality of certain
subpopulation(s), while minimizing the selective pressure for outgrowth of cells bearing undesirable
alteration(s). Here, the maintenance of tumor heterogeneity – representing the persistence of a “naïve” pre-treatment state – may be preferable to the undesirable outgrowth of specific subpopulation(s). On the other hand, if we can potentially drive towards the enrichment of therapeutic sensitive subpopulations while preserving overall tumor sensitivity, a sequential treatment approach may be successful as part of a multi-course regimen. Thus, the ability to apply optimization approaches to control the trajectories of tumor composition offer opportunities to maximize the effects of concurrent or successive drug combination regimens.

MATERIALS AND METHODS

Cell culture and chemicals

Murine Eμ-myc; p19Δrfl B-cell lymphomas were cultured in B-cell medium (45% DMEM, 45% IMDM, 10% FBS, supplemented with 2mM L-glutamine and 5μM β-mercaptoethanol). The cell line was tested and shown to be free of mycoplasma using both PCR-based (ATCC) and biochemical-based (Lonza) methods. All drugs were obtained from LC Laboratories, Sigma-Aldrich, Calbiochem, or Tocris Biosciences. For in vivo studies, irinotecan, chlorambucil, and vorinostat were dissolved in DMSO as stock and further diluted in 0.9% NaCl solution prior to injection. Vincristine was dissolved in 0.9% NaCl solution.

shRNA constructs

All shRNAs were expressed in either MSCV-LTR-MIR30-SV40-GFP (MLS) (40) or MSCV-LTR-MIR30-PGK-Tomato (MLT) retroviral vector and were previously validated for knockdown (24). Multiple shRNAs targeting each gene were used for single drug responses to rule out off-target effects (24). Transfection and transduction were performed as previously described (23).

In vitro competition assay
Single and combination drug treatments *in vitro* were performed as previously described (23,24) (see Fig. S3). Briefly, lymphoma cells were infected to ~20% of the total population with the indicated retroviruses and were dosed with single or two drug combinations at concentrations needed to achieve 80-90% cell death (LD80-90) on the empty vector control (MLS or MLT) cells (assessed at 48 h). For combination treatments, each drug was dosed to ensure equal contribution of overall killing in the combination. Cell death was assessed with propidium iodide incorporation. Every 24 h, untreated and treated cells were diluted 1:4 and 1:2, respectively. At 72 h, the percentage of GFP+ and/or Tomato+ cells were analyzed on a cell analyzer FACScan, FACSCalibur, or LSRFortessa (BD Biosciences). To assess enrichment/depletion of the subpopulations, a log transformed Resistance Index (RI) (23,24) was calculated: \[\log_{2}RI = \log_{2}\left(\frac{L_{t} - \text{Lu}}{L_{u} - L_{t} \text{Lu}}\right) \], where \(L_{t} \) and \(L_{u} \) represents percentage of labeled cells (GFP+ and/or Tomato+) out of the total live population with and without treatment, respectively. See Supplemental Text for derivations of log2RI. Experiments were performed with indicated shRNAs in both MLS and MLT vectors to rule out any vector-specific effects.

In vivo competition and survival assay

Two million infected *Eμ-myc; p19Arf−/−* lymphoma cells were tail-vein injected into 7-9 weeks female syngeneic recipient C56/BL6 mice. Upon palpable tumor (~12-13 days after injection), mice were treated with single or combination drug regimens. Dosing for each drug was determined to ensure comparable efficacy on control uninfected lymphoma cells. Irinotecan (IRT) was administered at 120 mg/kg i.p. once on day 1; vincristine (Vin) at 1 mg/kg i.p. once on day 1; chlorambucil (CBL) at 10 mg/kg i.p. once on day 1; and vorinostat (SAHA) at 300 mg/kg i.p. on days 1 and 3 and 150 mg/kg on days 2 and 4. Vehicle control consisted of maximum equivalent doses of DMSO and 0.9% NaCl solution. For competition assay, lymphoma cells from thymus, lymph node, and spleen were harvested at sizable palpable tumor after relapse and analyzed on a cell analyzer. For survival studies, tumor-free survival was monitored by daily palpation following treatment.
In vivo fluorescence imaging

Fluorescence imaging of mice was acquired using the IVIS imaging system and Living Image software v4.3.1 (PerkinElmer). Two excitations (535nM and 465nM) with 9 emission filters (for a pairwise combination of ten) were used. GFP, Tomato, and background signals were spectral unmixed with resulting composite image further enhanced with brightness and contrast.

Mathematical optimization and models

The optimization of combination therapies for minimizing heterogeneous subpopulations was mathematically formulated as a binary integer programming problem. All analyses were performed in MATLAB R2012b (MathWorks). Binary integer programming was solved using the bintprog function in the MATLAB Optimization Toolbox. In determining cases for experimental validation, we sorted the simulation results based on difference in treatment effectiveness (evaluated by log₂RI) between therapy optimized based on consideration of entire heterogeneity and that of just the predominant subpopulation. We validated cases with large efficacy differences, including non-intuitive cases (e.g. optimal drug combinations for heterogeneous that does not contain component drugs best for predominant subpopulation) and cases with different heterogeneous tumor compositions. Refer to Supplemental Text for more details on the mathematical model for optimization and descriptive model on the efficacy comparison between Vin/SAHA and IRT/CBL.

Rotated principal component analysis

Rotated principal component analysis was used to visualize the impact of different drug combinations on tumor composition. The data consists of a single matrix with each row representing a different treatment condition (or a pure subpopulation) and each column representing an averaged log₂RI for each drug. The averaged log₂RI was derived from matrix multiplication of the enrichment/depletion dataset matrix, \(R \) (see mathematical models section in Supplemental Text) by population composition vector, \(p \), determined experimentally following treatment. Thus, the derived data represents a pharmacological profile for each
resulting population following a specific treatment condition. The data was mean centered and unit variance scaled. Principal component analysis (PCA) was performed using SIMCA-P v11.5 (Umetrics). For ease of interpretation, a linear transformation of the principal component space was performed using MATLAB by rotating the parental population projection completely into the second principal component.

Statistical analyses
Statistical analyses were performed using Prism v5 (GraphPad). Two-tailed Student’s t-tests and one-way ANOVA (with Bonferroni post-hoc test) were used, as indicated. Error bars represent mean ± s.e.m. Logrank (Mantel-Cox) test was used for comparison of survival curves.

ACKNOWLEDGEMENTS
We thank Luke Gilbert and Peter Bruno for advice on experimental procedures; members of the Lauffenburger and Hemann lab for helpful discussions; and Peter Bruno, Eleanor Cameron, Miles Miller, and Aaron Meyer for comments on the manuscript. Funding was provided by Integrative Cancer Biology Program Grant U54-CA112967-06 (to M.T.H. and D.A.L.). B.Z. is supported by the NIH/NIGMS Interdepartmental Biotechnology Training Program 5T32GM008334. This work was also supported in part by the Koch Institute Support (core) Grant P30-CA14051 from the National Cancer Institute.

AUTHOR CONTRIBUTIONS
B.Z., J.R.P., D.A.L. and M.T.H. designed research. B.Z. performed experiments and mathematical calculations. B.Z., J.R.P., D.A.L. and M.T.H. analyzed data. B.Z., D.A.L. and M.T.H. wrote the manuscript.
REFERENCES

FIGURE LEGENDS

Fig. 1. A strategy for modeling intratumoral heterogeneity and mathematical optimization. (A) A simplified schematic of tumor evolution, with deregulated Myc expression and p19^{Arf} loss, followed by additional loss-of-function mutations. (B) RNAi-based modeling of intratumoral heterogeneity. Each shRNA knockdown models a specific loss-of-function event. Mixture of these subpopulations creates a heterogeneous tumor population. (C) A schematic of how mathematical optimization can be applied to drug design for tumor heterogeneity. We have previously acquired a dataset on the response of specific shRNA knockdowns to a set of single chemotherapeutic and targeted agents (23,24). Here, using this dataset and given a particular population composition, we applied an optimization approach (see Material and Methods) to determine drug combinations that are best and worst at treating all subpopulations. (D) Two top “hits” (i.e. population compositions) derived from computational simulation demonstrating that the optimal drug combination predicted is different depending on whether we examine the entire heterogeneous tumor population or only a particular subpopulation (see Fig. S2 and Table S1 for summary of all simulation results).

Fig. 2. In vitro validation of predicted effects of combination therapies on subpopulation composition. (A) A schematic of the in vitro competition assay (see also Fig. S3). Eμ-Myc; p19^{Arf/−} lymphoma cells were retrovirally transduced with the desired shRNA(s). Mixed populations were treated with combination treatment and analyzed at 48 h. (B) A representative flow cytometry result of no treatment and the indicated combination treatments of a mixed population of tumor cells containing parental, shChk2 (Tomato-labeled), and shBok (GFP-labeled). (C-E) In vitro competition assay results for different population composition using different combination treatments. Drug combinations predictably enriched/depleted subpopulations. (F) Correlation between predictions made from mathematical model and the actual experimental results. Gray data points represent individual subpopulations (e.g. shChk2 only) and blue data points represent combined subpopulations (e.g. shChk2 and shBok). Data shown are
mean ± s.e.m. of three independent experiments, **P<0.01, ***P<0.001 (ANOVA with Bonferroni post-hoc test).

Fig. 3. In vivo validation of effects of combination therapies on subpopulation composition. (A) A schematic of the in vivo competition assay. Eμ-Myc; p19ARF-/- lymphoma cells were retrovirally transduced with desired shRNA, and mixed populations of tumor cells were tail-vein injected into recipient mice. Combination treatments were given at presentation of palpable tumor. Tumor cells were collected and analyzed at relapse. (B) Representative fluorescence imaging of vehicle-treated mice with mixed populations of parental, shChk2 (GFP-labeled), and shBok (Tomato-labeled) infected tumor cells, showing intratumoral heterogeneity in vivo. (C) Representative in vivo competition assay flow cytometry analysis of relapsed tumors following in vivo treatment with the indicated combination therapies. (D) An in vivo competition assay showing the enrichment or depletion of subpopulations of shRNA infected tumor cells. Vin/SAHA and IRT/CBL treatment data for the combined shBok and shChk2 populations are shown in lymph node, thymus, and spleen. Drug combination predictably enriched/depleted subpopulations, in agreement with in vitro results (Fig. 2). Data shown are mean ± s.e.m of three independent experiments (with 4-5 mice per experiment). **P<0.01 (two-tailed Student’s t-test). (E) Relative tumor-free survival for each combination treatment on mice transplanted with heterogeneous parental/shChk2/shBok tumor, with days normalized to the median tumor-free survival of treated mice with homogeneous parental tumor. Vin/SAHA improved relative tumor-free survival when compared to IRT/CBL. Data were compiled from four independent experiments. P value was calculated using a log-rank test.

Fig. 4. Vin/SAHA is superior to IRT/CBL in extending relative tumor-free survival in a three-component heterogeneous tumor across varying subpopulation proportions. (A) A ternary plot showing the comparison between Vin/SAHA and IRT/CBL in terms of relative...
tumor-free survival in a shChk2/shBok/parental tumor (i.e. tumor-free survival of heterogeneous tumor normalized to that of a parental-only empty vector control) at varying subpopulation proportions. Each white dot represents a tumor composition for which experiments were performed to determine tumor-free survival in mice. Three out of the four dots at the corner of the ternary plot represents the homogeneous tumor that was used to generate the model. The position of the internal white dot approximates the heterogeneous tumor composition at the end of the experiment in vehicle-treated mice. (B-C) Predicted and actual experimental trajectories of tumor with empty vector control parental/ mls/mlt (B) or heterogeneous tumor with parental/shChk2/shBok (C) upon treatment with Vin/SAHA or IRT/CBL in vivo. For heterogeneous tumor (C), the ternary plot was overlay with heat map in (A) showing the therapeutic efficacy comparisons between Vin/SAHA and IRT/CBL. Dotted circle denotes initial tumor composition; solid circle denotes the mean final tumor composition (of pooled lymph nodes per mouse) at relapse following treatment. Predicted trajectories are shown with gray circles and dotted arrows; experimental results of trajectories are shown in white circles and solid arrows.
Figure 1

(A) Gene loss of Eμ-Myc and p19Arf in lymphoma cells (parental) infect GFP-tagged shRNA and sort.

(B) Ep-Myc p19Arf-/- lymphoma cells infect Tomato-tagged shRNA and sort.

(C) Heterogeneous Tumor

Subpopulations (shRNA knock-downs)

Drug 1
Drug 2
Combination

(best at treating all subpopulations)

(worst at treating all subpopulations)

(D) Resistance

shChk2/shBok/parental
1:1

best combo
Vini/SAHA
ActID/Erlotinib

worst combo
IRT/CBL

shChk2/shBim/parental
2:1

best combo (only shChk2/parental)
Vini/CBL

worst combo (only shBok/parental)

Vini/ActD
ActID/Erlotinib

shChk2/shBim/parental

best combo (only shBim/parental)
Vini/IRT
Vini/CBL

Drugs

1:1
IRT/CBL

2:1

Vin/CBL

Doxorubicin
Chlorambucil
S-1 5FU
Vincristine
Irinotecan
Actinomycin D
Sunitinib
Erlotinib
17AAG
SAHA

log2RI

-4 -3 -2 -1 0 1 2 3 4

Resistance

Sensitivity

shRNA confers

Author Manuscript Published OnlineFirst on December 6, 2013; DOI: 10.1158/2159-8290.CD-13-0465
Figure 3

A. 2 million cells total mixed tumor population

B. Drug combination treatment lymph nodes, thymus, spleen

C. Vehicle Vin/SAHA IRT/CBL

D. Log2RI

E. Relative tumor-free survival (%)
Figure 4

A Relative tumor-free survival (Vin/SAHA - IRT/CBL)

B Relative tumor-free survival (IRT/CBL)

C Relative tumor-free survival (Vin/SAHA - IRT/CBL)

Normalized days after treatment

Realtive tumer-free survival (%)

Parental (Eμ-myc p19Arf-/–)

shBok

shChk2

Δ Relative tumor-free survival (Vin/SAHA - IRT/CBL)

100% shChk2

0% parental

0% shChk2

100% shBok

0% parental

~33% shChk2

~24% shBok

~43% parental

Normalized days after treatment

Research.
CANCER DISCOVERY

Addressing genetic tumor heterogeneity through computationally predictive combination therapy

Boyang Zhao, Justin R Pritchard, Douglas A Lauffenburger, et al.

Cancer Discovery Published OnlineFirst December 6, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/2159-8290.CD-13-0465

Supplementary Material
Access the most recent supplemental material at:
http://cancerdiscovery.aacrjournals.org/content/suppl/2013/12/06/2159-8290.CD-13-0465.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.