A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors

AUTHORS

AUTHORS’ AFFILIATIONS:

^1Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York;
^2Nemours Children’s Hospital, Orlando, Florida;
^3Array BioPharma, Boulder, Colorado;
^4Loxo Oncology Inc., Stamford, Connecticut;
^5Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York;
^6Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York;
^7Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York;
^8Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York;
^9Weill Cornell Medical College, New York, New York;

*contributed equally. **corresponding authors.

RUNNING TITLE: Next-Generation TRK Inhibitor Overcomes Acquired Resistance

KEYWORDS: TRK fusion, acquired resistance, targeted therapy

FINANCIAL SUPPORT: Funding was provided by Loxo Oncology, Inc., the National Institutes of Health (P30 CA008748, U54 OD020355, R01 CA204749), and the Marie-Josée and Henry R. Kravis Center for Molecular Oncology.

CORRESPONDING AUTHORS:

David M. Hyman, M.D. S. Michael Rothenberg, M.D., Ph.D.
Memorial Sloan Kettering Cancer Center Loxo Oncology, Inc.
1275 York Avenue 281 Tresser Boulevard
New York, NY 10065
646-888-4544
hymand@mskcc.org

Stamford, CT 06901
720-859-4131
rothenberg@loxooncology.com

CONFLICT OF INTEREST STATEMENT: J. Blake, G. Kolakowski, B. Brandhuber, P. Larsen, K. Bouhana, S. Winski, R. Hamor, W-I Wu, A. Parker, T. Morales, F. Sullivan, W. DeWolf, L. Wollenberg and S. Andrews are employees of and have ownership interest in Array BioPharma. N. Ku, B. Tuch, K. Ebata and S.M. Rothenberg are employees of Loxo Oncology. S. Smith and V. Lauriault are consultants for Loxo Oncology. D. M. Hyman has received research support from Loxo Oncology.

ABSTRACT

Larotrectinib, a selective TRK tyrosine kinase inhibitor (TKI), has demonstrated histologyagnostic efficacy in patients with TRK fusion-positive cancers. While responses to TRK inhibition can be dramatic and durable, duration of response may eventually be limited by acquired resistance. LOXO-195 is a novel, selective TRK TKI designed to overcome acquired resistance mediated by recurrent kinase domain (solvent front and xDFG) mutations identified in multiple patients who have developed resistance to TRK TKIs. Activity against these acquired mutations was confirmed in enzyme and cell-based assays and in vivo tumor models. As clinical proof of concept, the first two patients with TRK fusion-positive cancers that developed acquired resistance mutations on larotrectinib were treated with LOXO-195 on a first-in-human basis, utilizing rapid dose titration guided by pharmacokinetic assessments. This approach led to rapid tumor responses and extended the overall duration of disease control achieved with TRK inhibition in both patients.

STATEMENT OF SIGNIFICANCE

LOXO-195 abrogated resistance in TRK fusion-positive cancers that acquired kinase domain mutations, a shared liability with all existing TRK TKIs. This establishes a role for sequential treatment by demonstrating continued TRK dependence, and validates a novel paradigm for the accelerated development of next-generation inhibitors against validated oncogenic targets.
ARTICLE

INTRODUCTION

Chromosomal rearrangements involving the *NTRK1*, *NTRK2*, or *NTRK3* genes (encoding the TRKA, TRKB or TRKC receptor tyrosine kinases) produce oncogenically activated fusion kinases in a wide variety of adult and pediatric malignancies (1). These fusions have been identified at varying frequencies in a multitude of adult and pediatric solid and hematological malignancies. Rearrangements produce an in-frame fusion of the TRK kinase domain downstream of diverse 5’ gene partners (2). TRK fusions possess ligand-independent constitutive kinase activity, activate canonical downstream signaling pathways involved in growth and survival, transform primary cells in vitro and in vivo, and can occur in human cancers in a mutually exclusive pattern from other oncogenic drivers (2-5).

Recent data demonstrates *NTRK* fusions are highly therapeutically actionable drivers of tumor growth. In an integrated analysis of three studies of larotrectinib, the confirmed overall response rate in 50 evaluable patients was 76% (95% confidence interval: 62–87%) (6). A total of 17 unique tumor types were treated and efficacy was observed regardless of patient age, tumor type, NTRK gene fusion, and upstream fusion partner. Responses have generally been long-lasting with the median duration of response not yet reached and 91% of all responding patients remaining progression free at a 6-month landmark analysis.

Despite durable responses to TRK kinase-directed therapy in patients with *NTRK*-rearranged tumors, it is expected that acquired resistance to therapy will ultimately emerge in most patients. Consistent with this expectation, previous reports have described the acquisition of secondary mutations in the TRK kinase domain after treatment with entrectinib, a multi-kinase inhibitor with activity against TRK, in two patients. Specifically, TRKA G595R and G667C substitutions were identified in independent resistant clones from a patient with LMNA-NTRK1 fusion-positive colorectal cancer; and a TRKC G623R substitution (homologous to TRKA G595R) was identified in a patient with ETV6-NTRK3 fusion-positive mammary analogue secretory carcinoma (7, 8).

These mutations are homologous to resistance mutations previously identified in other driver kinases such as *ALK* and *ROS1* and affect the kinase solvent front (e.g. G595R and G623R in TRKA/C, G1202R in ALK, G2032R in ROS) and the xDFG motif (e.g. G667C in TRKA, G1269A in ALK) (9, 10). Structural modeling suggests that each mutation directly interferes with binding by both larotrectinib and all other TKIs with TRK activity (7, 8). Functional studies have subsequently confirmed that cancer cells harboring these mutations are cross-resistant to all TKIs with anti-TRK activity (7, 11, 12).

For several TKIs (i.e., imatinib, erlotinib, crizotinib), a detailed molecular understanding of resistance has enabled the development of next-generation TKIs that overcome acquired resistance to earlier-generation TKIs (13-15). Historically, translating lab insight into an investigational therapy has taken several years, an unfortunate period of time for the first cohort...
of patients to derive benefit from the novel class. We are not aware of any circumstances where the development of a next-generation inhibitor has taken place in predominantly the same population used to validate and approve the preceding inhibitor.

We describe the identification, pre-clinical characterization, and accelerated early clinical development of LOXO-195, a compound that is structurally distinct from existing TRK TKIs. LOXO-195 is an orally available, highly potent, and selective TRK kinase inhibitor designed to overcome resistance mediated by acquired kinase domain mutations.

RESULTS

Preclinical Development of LOXO-195

The preclinical development of LOXO-195 paralleled the early clinical development of larotrectinib in the hope that a clinical candidate could be ready in time for the first patients to progress on larotrectinib. Though a clinical case series of patients with acquired resistance on larotrectinib was not available, we performed directed mutagenesis experiments (12) and extrapolated from precedent mechanisms of resistance characterized for structurally similar oncogenic kinases (e.g. ALK, ROS1) (9, 10) and published case studies (7, 8) to anticipate the structural basis of acquired resistance in the setting of larotrectinib exposure.

We used X-ray crystallography to understand whether solvent front or xDFG substitutions involving the ATP-binding site of TRK might impair larotrectinib binding potency (Figure 1A top). The glycine to arginine substitutions G595R and G623R in the solvent front of TRKA and TRKC, respectively, introduce steric clashes between the arginine side chain and the hydroxyprrolidine group of larotrectinib. Similarly, the TRKA G667C or TRKC G696A xDFG substitutions create steric clashes between the cysteine or alanine side chain and the difluorophenyl group of larotrectinib. Although the TRKC G696A substitution at the homologous position to TRKA G667C (and ALK G1269A) has not yet been observed in patients, structural modeling suggests that it would have similarly negative effects on drug binding.

Based on these structural insights, we performed an in-silico evaluation of a collection of structurally-distinct, potent, and specific TRK kinase inhibitors to identify compounds that could best accommodate these acquired resistance mutations. From this screen, LOXO-195 was selected for further study. LOXO-195 is a low molecular weight macrocycle predicted to potently inhibit the clinically observed TRK resistance mutations (Supplementary Figure 1A). In contrast to larotrectinib, structural modeling suggests that LOXO-195 can accommodate the bulky, positively-charged arginine side chain in the solvent front without any steric clashes (Figure 1A bottom). Similarly, LOXO-195 is predicted to better accommodate TRKA and TRKC xDFG substitutions (G667C and G696A, respectively) than larotrectinib (Figure 1A bottom). Additional biochemical characterization revealed that TRKA-G595R (but not TRKA-G667C) increases the ATP affinity of the kinase (Kₘ 6 μM for TRKA-G595R vs. 51 μM for TRKA), resulting in an intrinsically more active kinase reminiscent of the EGFR T790M gatekeeper (16). Such dual effects on intrinsic kinase activity and inhibitor binding may be more challenging to
overcome therapeutically. Finally, LOXO-195 showed high oral exposure across pre-clinical species and exhibited absorption, distribution, metabolism, and excretion (ADME) properties favorable for projected human dosing (Supplementary Table 1).

LOXO-195 potently inhibits diverse activated TRK kinases in vitro

To determine the impact of TRK kinase resistance mutations on inhibitor activity, larotrectinib and LOXO-195 were tested against purified kinase domains in vitro. Both agents demonstrated strong binding to the wild-type TRKA, TRKB and TRKC kinase domains (Supplementary Figure 1B). Both drugs also had potent (i.e. IC₅₀ <1 nM) inhibitory activity in kinase enzyme assays (Figure 1B). Importantly, LOXO-195 achieved low nanomolar inhibitory activity against TRKA G595R, TRKC G623R, and TRKA G667C, with IC₅₀s ranging from 2.0-9.8 nM (Figure 1B). In contrast, larotrectinib displayed significantly reduced inhibitory activity in cells expressing TRKA G595R and G667C mutations as well as TRKC G623R (between 17- and 77-fold higher IC₅₀ than for the wild-type kinases) (Figure 1B).

To verify that these in vitro findings translated into cell models, we assessed the activity of LOXO-195 and larotrectinib against activated TRK kinases in NIH-3T3 cells expressing TRK kinase acquired-resistance mutations. We studied both ΔTRKA, a constitutively activating in-frame deletion of the TRKA extracellular domain (17), and the ETV6-NTRK3 fusion that has been identified in diverse human cancers. LOXO-195 displayed significant inhibitory activity in cells across all resistance mutations previously identified in patients (Figure 2A) and preclinically (Supplementary Figure 2A).

LOXO-195 inhibits tumor growth TRK kinase tumor models

To establish whether LOXO-195 inhibits tumor growth in models of the oncogenic TRK kinase, we implanted stably transfected NIH-3T3 ΔTRKA and ΔTRKA-G595R cells subcutaneously into the flanks of nude mice. Both larotrectinib and LOXO-195 were effective at reducing phosphorylated TRKA in tumors driven by ΔTRKA. In contrast, only LOXO-195 strongly suppressed phospho-TRKA in ΔTRKA-G595R cells in a dose-dependent manner (Supplementary Figure 2B). LOXO-195 also caused inhibition of tumor growth relative to vehicle at all doses in four TRK-dependent tumor models (ΔTRKA, ΔTRKA-G595R, ΔTRKA-G667C, and TPM3-NTRK1 fusion-positive KM12 colorectal cancer cells (Figure 2B). Larotrectinib inhibited KM12 and NIH 3T3-ΔTRKA tumors to a similar degree, but as expected had only a minimal effect on NIH 3T3 ΔTRKA-G595R and ΔTRKA-G667C tumors. Group mean body weight loss did not exceed 5% for any agent (Supplementary Figure 2C).

LOXO-195 displays high selectivity for the TRK proteins

To determine LOXO-195 selectivity for the TRK kinases, we profiled 228 individual kinases in vitro at a LOXO-195 concentration of 1 μM, which is ~1667-fold higher than its IC₅₀ for TRKA (0.6 nM). LOXO-195 was more than 1000-fold selective for 98% of non-TRK kinases tested (Supplementary Table 2).
We extended our study of LOXO-195 selectivity in 87 human cancer cell lines. LOXO-195 demonstrated potent inhibition of cell proliferation in TRK fusion-containing KM12, CUTO-3, and MO-91 cell lines (IC50 ≤5 nM) (Supplementary Figure 3). In contrast, LOXO-195 treatment with concentrations up to 10 µM had no inhibitory effect on the growth of the 84 cell lines that did not contain a TRK fusion.

Clinical Experience with LOXO-195

We treated two patients with LOXO-195 whose tumors developed solvent front substitution-mediated acquired resistance to larotrectinib. These are the first two patients to develop acquired resistance to larotrectinib. The first patient was a 55-year-old woman with heavily pretreated advanced LMNA-NTRK1 fusion-positive colorectal cancer who achieved a rapid confirmed partial response to larotrectinib treatment but progressed after 6 months of treatment. Whole-exome sequencing of the pre- and post-larotrectinib treatment biopsies demonstrated a clonal TRKA G595R-driven recurrent tumor (Supplementary Figure 4). The second patient was a 2-year-old girl with an ETV6-NTRK3 fusion-positive recurrent infantile fibrosarcoma of the right neck and base of skull who had progressed despite numerous attempted surgical resections and multiple lines of combination chemotherapy. A greater than 90% tumor regression was achieved in response to larotrectinib (18), followed by progression after 8 months, upon which repeat biopsy revealed an acquired TRKC G623R mutation.

Both patients were treated with LOXO-195 under FDA-allowed single patient protocols (Figure 3A). Due to clinical urgency and the desire to achieve biologically relevant clinical exposures, a real-time intra-patient pharmacokinetic (PK)-guided dose escalation approach was undertaken. By integrating predicted ADME data for LOXO-195 with in vitro and in vivo TRK mutant potency estimates and preclinical toxicology studies, we established target PK thresholds (i.e., Cmax, Cmin and AUC) thought to be consistent with significant TRK target coverage: at least 90% inhibition of TRK target coverage at Cmax, 50% inhibition at Cmin, and AUC that provides target inhibition for the duration of the dosing interval (Figure 3B).

Case 1: Adult LMNA-NTRK1-Rearranged Colorectal Cancer

The adult patient with recurrent LMNA-NTRK1-rearranged colorectal cancer and a G595R acquired resistance mutation initiated treatment with LOXO-195 at a dose of 50 mg twice daily. Although real-time PK analysis revealed significant TRKA-G595R target coverage at Cmax, Cmin levels fell below the TRKA-G595R IC50 (Figure 3B left, Supplementary Table 3). Therefore, on Day 14, the dose was increased to 100 mg twice daily. This higher dose resulted in an approximately dose-proportional increase in exposure predicted to result in continuous TRKA-G595R target inhibition with twice daily dosing (Figure 3B left). The patient tolerated therapy well. Initial grade 2 dizziness and grade 1 diarrhea both resolved completely despite continued dosing of LOXO-195.
This patient experienced a rapid clinical response to therapy soon after starting LOXO-195, with decreasing abdominal pain and fullness. Repeat imaging after 4 weeks of therapy demonstrated a 38% decrease in measurable tumor burden that was accompanied by resolution of FDG-avidity in previously hypermetabolic liver, peritoneal, and adnexal metastases (Figure 3C upper). Tumor burden continued to decrease with subsequent therapy, achieving a 58% decrease compared to baseline to date (a confirmed RECIST partial response). Concurrent profiling of tumor-derived cell-free DNA from plasma specimens collected longitudinally throughout LOXO-195 therapy detected the known G595R mutation at baseline. Consistent with the patient’s clinical and radiologic response, the G595R allele fraction decreased to undetectable levels after 2 weeks of treatment and has remained undetectable since this time (Figure 3C lower). The patient remains on LOXO-195 at more than 6 months from initiation and is tolerating treatment well.

Case 2: Pediatric ETV6-NTRK3-Rearranged Infantile Fibrosarcoma

The pediatric patient with recurrent ETV6-NTRK3-rearranged infantile fibrosarcoma and a G623R acquired resistance mutation initiated treatment with a liquid formulation of LOXO-195 at a dose of 20 mg twice daily. The dose was increased to 60 mg twice daily after 7 days of treatment, and to 100 mg twice daily after 21 days on the 60 mg dose. These dose escalations produced approximate dose-proportional increases in exposure, and resulted in significant TRKC-G623R target coverage over the dosing interval (Figure 3B right, Supplementary Table 3). The patient tolerated LOXO-195 treatment well, with the only LOXO-195 related adverse event being grade 2 dizziness that did not interfere with dosing.

This patient demonstrated visible tumor regression in a previously palpable mass in the head and neck region within 15 days of initiating LOXO-195 treatment. While a definitive assessment was limited by anatomical distortion from prior therapies, magnetic resonance imaging (MRI) after 28 days of treatment revealed a partial response, with tumor regression by at least 30% (Figure 3D). Notwithstanding the clinical and radiographic response, the dose of LOXO-195 was increased to 100 mg twice daily with the goal of maximizing tumor regression prior to possible surgical re-resection. Repeat MRI after 66 days of treatment confirmed an ongoing response (Figure 3D). The patient continued LOXO-195 at the same dose for an additional 1 month, after which she was hospitalized for respiratory distress. Imaging revealed a new mediastinal mass and a pleural effusion. Despite further palliative chemotherapy, her condition worsened, and she succumbed to her cancer.

DISCUSSION

For actionable molecular targets such as ABL, EGFR and ALK, next-generation kinase inhibitors designed to overcome acquired resistance have extended the period of durable disease control in affected patients (9, 13, 15, 19-22). Historically, it has taken years to bring these next-generation inhibitors into the clinic, even after the predominant resistance mechanisms are identified in patients. Rarely, if ever, have some of the first patients participating in the initial studies of a TKI had immediate access to a next-generation inhibitor...
designed to overcome *bona fide* resistance mechanisms. Here, we report on the feasibility and utility of a paradigm for drug development that combines predictive models such as directed mutagenesis, crystallography-informed structural modeling and a rapid re-biopsy approach in patients, utilizing both tissue and plasma. A dynamic medicinal chemistry collaboration can translate this structure-activity relationship knowledge into novel analogues worthy of clinical advancement, while a dynamic clinical collaboration can implement a pharmacologically-guided dose escalation schema that delivers early clinical validation of the next-generation agent, and hopefully, benefit to patients.

LOXO-195 was identified as a potent and selective TRK inhibitor with pre-clinical activity against all NTRK resistance mutations identified in patients to date, including solvent-front (e.g., TRKA-G595R, TRKC-G623R) and xDFG (e.g., TRKA-G667C) substitutions. Importantly, solvent-front mutations have been described in every clinical case of acquired TRK inhibitor resistance described to date (including those herein), in contrast to other mutational sites that have only been shown *in vitro* or together with solvent front at low frequency. Notably, the solvent-front motif is a frequent site of acquired resistance mutations to TKIs in other kinases involved in recurrent rearrangements including ALK (e.g., G1202R, G1202del, D1203N) and ROS1 (e.g., G2032R, D2033N), and it has also been challenging to overcome therapeutically (9, 10). The substitution of basic (e.g., arginine) and bulky (e.g., asparagine) residues in this motif directly interferes with inhibitor binding to the kinase ATP site. Moreover, TRKA-G595R increases the ATP affinity of the kinase, resulting in intrinsically more active activity.

The combination of high potency, selectivity, and a wide therapeutic window in pre-clinical toxicology studies enabled our unique initial clinical development approach. We implemented single-patient protocols that utilized “real-time” safety- and PK-guided dose escalation. Our ability to safely and rapidly escalate the dose of LOXO-195 within weeks for each patient permitted drug exposures to be achieved that salvaged prior responses, with minimal toxicity. In the case of the adult patient, the duration of the ongoing response to LOXO-195 has exceeded that achieved with prior larotrectinib treatment. Although the duration of response in the pediatric case was shorter, this initial proof-of-principle experience with LOXO-195 warrants continued clinical development.

The unusually rapid entry of LOXO-195 into the clinic allowed us to treat the first two patients ever to develop acquired resistance to larotrectinib. This feat was accomplished by accelerating preclinical *in vitro* testing and in vivo toxicology studies, and by utilizing FDA’s expanded access program. We are not aware of a similar, precedent drug development approach.

The traditional phase 1 study design was developed in the cytotoxic chemotherapy era, and was predicated on the concept that the fewest number of patients should be exposed to unacceptable toxicities. The resulting first-in-human dose estimates and dose escalation schemes were therefore conservative. Less concern was given to the “under-dosed” patient, as the underlying biologic hypothesis had often yet to be validated. However, in the setting of a validated target and rationally designed agent—or arguably, a *validated patient* who has acquired resistance following an initial response to a therapeutic class—great care should be
afforded to the problem of sub-therapeutic dosing. Our experience described here suggests that many of the historic risk-benefit assumptions that have guided phase 1 study design may need to be revisited when developing an agent like LOXO-195. A personalized, real-time clinical development strategy such as on the one depicted in Figure 4 may be more broadly appropriate for highly selective agents against clearly validated targets.

In summary, the next-generation TRK kinase inhibitor LOXO-195 possesses potent and selective activity against all three TRK kinases, their fusions, and acquired resistance mutations identified both preclinically and in patients. Sequential therapy that begins with larotrectinib and is followed by LOXO-195 after the development of acquired resistance represents a potential new treatment paradigm for patients with TRK fusion solid tumors, with the opportunity to extend the period of durable disease control in some patients. A real-time, safety- and PK-guided phase 1 study of LOXO-195 for patients with advanced TRK fusion-positive cancers whose tumors have progressed on a prior TRK inhibitor is currently planned.

METHODS

Preclinical Studies

Structural modeling
Structural models of TRKA and TRKC mutants were derived from an in-house X-ray crystal structure of TRKA in complex with larotrectinib. Amino acid substitutions were carried out in Maestro (v.11), and side chain conformation and the homology model for TRKC were carried out with the Prime module (Schrodinger Release 2016-3).

Enzyme assays
Binding affinities for each purified TRK kinase domain were measured using LanthaScreen™ Eu Kinase Binding technology (Invitrogen). Briefly, each donor europium antibody–labelled recombinant TRK kinase domain was incubated with the Fluor 236 probe and a serial dilution of each inhibitor, and the effect of added inhibitor on probe binding was monitored by TR-FRET. Enzyme activity was determined by monitoring the incorporation of [γ-33P]-ATP into poly-EAY peptide substrate in the presence of a serial dilution of each compound. Kinase profiling was performed using KinaseProfiler™ (Millipore, Inc.). See Supplementary Methods for additional details.

Cell lines and assays
KM12 cells were obtained from the NCI-Frederick Cancer DCTD Tumor Cell Repository in 2011. CUTO-3 cells were obtained from Dr. Robert Doebele, University of Colorado Cancer Center in 2015. MO-91 cells were obtained from Dr. Stephen Nimer, University of Miami Sylvester Cancer Center in 2015. 84 NTRK gene rearrangement-negative human cancer cell lines were selected from the Eurofins OncoPanel collection of cell lines (Eurofins) in 2015. NIH 3T3 cells were obtained by Array BioPharma from 2007-2016. Eurofins cell lines were authenticated by short-tandem repeat (STR) analysis (Genetica DNA Laboratories, Inc., last July 2015). KM12, CUTO-3 and MO-91 cells were authenticated by confirmation of the presence of each fusion (e.g.
TPM3-NTRK1, ETV6-NTRK3 or MPRIP-NTRK1, respectively) by the Oncomine Focus Assay NGS assay (Thermo Fisher Scientific, Inc., within 12 months of experiments). NIH 3T3 cells expressing ΔTRKA and ETV6-TRKC variants were engineered as described in Supplementary Methods. For cellular phospho-TRK measurement, cells were seeded into 96-well plates and incubated overnight at 37°C, incubated for one hour with a dilution series of each inhibitor, followed by lysis of each well monolayer in situ and quantitation of phospho-TRKA levels by ELISA assay (Cell Signaling Technologies) per the manufacturer’s instructions. For cellular phospho-ERK assessment, cells expressing each FLAG-tagged ETV6-TRKC variant were seeded into 96-well plates were treated with each inhibitor for one hour, followed by formaldehyde fixation, saponin-based suspension/ permeabilization, incubation with phosphorylated ERK antibody (Cell Signaling Technology), APC-anti-FLAG and PE anti-rabbit secondary antibodies and analysis by flow cytometry.

In vivo studies
All animal studies were performed in accordance with the 1996 Guide for the Care and Use of Laboratory Animals (NRC) and AAALAC-International. Each cell line (2-5x10^6 cells) was injected subcutaneously into female nu/nu NCr mice age 7-9 weeks (Taconic, Albany, NY) and allowed to grow to ~100-200 mm^3 (efficacy) or ~ 500mm^3 (PK-PD) prior to randomization by tumor size and treatment with each inhibitor by oral gavage. For PK-PD analysis, animals were dosed for 3 days, followed by euthanasia, excision of tumors and collection of plasma. Phospho-TRK levels in tumor lysates were determined by ELISA assay, while plasma inhibitor levels were determined by LC-MS/MS. For efficacy analysis, animals were dosed by oral gavage, and body weight and tumor size were monitored at regular intervals. See Supplementary Methods for additional details.

Treatment Plan Design and Conduct
Patients were treated at Memorial Sloan Kettering Cancer Center, New York City, NY and Nemours Children’s Hospital, Orlando, FL. The FDA and institutional review boards from each site approved the treatment plan, and each patient (or legal guardians/representatives) provided informed consent prior to enrollment. The single patient protocols were designed by the sponsor, AD and DMH.

PK Assessment
Plasma levels for LOXO-195 were measured from blood samples collected pre-dose and at defined intervals after dosing on Day 1 and Day 8 of the starting dose and on Day 1 of each subsequent dose escalation. LOXO-195 concentration was analyzed using validated LC/MS-MS) and non-compartmental PK parameters were determined.

Treatment and Response Assessment
LOXO-195 was administered to patients as a powder-in-capsule or liquid formulation. Dose escalation was only allowed after a minimum of 7 days at a specific dose level, and only in the absence of any Grade 3-4 toxicity. Increases were limited to no more than three times the previous daily dose level.
Dose modifications and interruptions followed a prescribed algorithm. Adverse events were captured using CTCAE version 4.03. Response was evaluated using RECIST 1.1.
REFERENCES

FIGURE LEGENDS

Figure 1. TRK inhibitor binding to acquired resistance mutations. A, structural models showing steric interactions (circled red dashes) between larotrectinib (upper) and solvent-front (i.e. G595R, G623R) or xDFG (i.e. G667C, G696A) resistance mutations in TRKA and TRKC. In contrast, LOXO-195 (lower) can accommodate solvent front and xDFG resistance mutations. B, IC50 values for each agent in purified kinase assays at KM ATP are shown as mean +/- standard deviation (SD) of the indicated replicates. The ratio of IC50 values for each mutant IC50 to the corresponding unmutated kinase is shown in parentheses. The IC50 values for LOXO-195 for TRKC WT and G696A were below the lower limit of the assay (2.5 nM).

Figure 2. Effect LOXO-195 and larotrectinib on TRK cellular activity. A, NIH 3T3 cells expressing the indicated TRK proteins were treated with LOXO-195 or larotrectinib for one hour, followed by quantification of cellular phospho-TRK levels by ELISA (for ΔTRKA, ΔTRKA-G595R and ΔTRKA-G667C) or cellular phospho-ERK levels by flow cytometry (for ETV6-TRKC, ETV6-TRKC-G623R and ETV6-TRKC G696A). IC50 (nM) values are displayed as mean +/- SD of at least 3 replicates. B, KM12 (TPM3-TRKA) xenografts or NIH 3T3 ΔTRKA (+/- G595R or G667C) allografts following oral treatment with larotrectinib or LOXO-195 at the indicated doses (n = 7 animals per treatment group). Data represent mean tumor volume +/- Standard Error of the Mean (SEM).

Figure 3. Clinical testing strategy and proof of concept of LOXO-195 activity against acquired resistance mutations. A, Design of single patient clinical protocols. B, Measured Cmax and Cmin (upper and lower black symbols, respectively) for larotrectinib and LOXO-195 for each patient are displayed relative to patient-specific TRK protein target coverage: TRKA/TRKC (green rectangles), TRKA-G595R/TRKC-G623R (red rectangles). The lower edge of each rectangle = IC50 for the indicated inhibitor/target, the upper edge = IC90. xDFG (i.e. TRKA-G667C, TRKC-G696A) mutant target coverages (blue rectangles) are included for comparison. C, Upper CT-PET axial images from adult patient with LMNA1-NTRK1 G595R colorectal cancer demonstrating reduction in hypermetabolic liver and adnexal masses with LOXO-195 treatment.
Lower decrease in NTRK1 (TRKA) G595R cell-free DNA allelic fraction preceded the decrease in tumor burden by RECIST 1.1. D, Post-contrast axial T2 MRI images from the pediatric patient with ETV6-NTRK3 G623R MASC before (left) and after 28 (right) and 66 (lower) days of LOXO-195 treatment.

Figure 4. Traditional vs. PK-Guided, Accelerated Phase 1 Design. Traditional Phase 1 “3+3” dose escalations studies enroll between 3-6 patients at each dose level based on observed toxicity with dose increments becoming smaller as dose increases (top). This conservative design, developed in the cytotoxic era, risks under-dosing patients with validated targets. In a first-in-human Phase 1 study of a rationally designed agent against a validated target, the risk of sub-therapeutic dosing may represent a greater harm to patients. For this situation, we propose a PK-Guided, accelerated Phase 1 design (bottom). This design combines multiple efficiencies including: 1) biomarker selection during dose escalation, 2) PK-guided rapid intra-patient dose escalation during a single cycle of therapy, 3) sequentially escalating starting dose and, 4) early dose expansion upon identification of a therapeutic dose.
A

Larotrectinib

TRKA

G595R

G667C

TRKC

G623R

G696A

LOXO-195

TRKA

G595R

G667C

TRKC

G623R

G696A

B

<table>
<thead>
<tr>
<th>Kinase Enzyme</th>
<th>Larotrectinib</th>
<th>LOXO-195</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC_{50} (nM)</td>
<td>n</td>
</tr>
<tr>
<td>TRKA WT</td>
<td>0.9 ± 0.33</td>
<td>13</td>
</tr>
<tr>
<td>TRKA-G595R</td>
<td>69.0 ± 13.4 (77x)</td>
<td>13</td>
</tr>
<tr>
<td>TRKA-G667C</td>
<td>45.5 ± 4.6 (51x)</td>
<td>9</td>
</tr>
<tr>
<td>TRKC WT</td>
<td>2.8 ± 0.4</td>
<td>16</td>
</tr>
<tr>
<td>TRKC G623R</td>
<td>48 ± 14 (17x)</td>
<td>16</td>
</tr>
<tr>
<td>TRKC G696A</td>
<td>4.5 ± 1.0 (1.6x)</td>
<td>9</td>
</tr>
</tbody>
</table>

FIGURE 1
Next Generation TRK Inhibitor
FIGURE 2
Next Generation TRK Inhibitor

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
FIGURE 3

Next Generation TRK Inhibitor
FIGURE 4
Next Generation TRK Inhibitor
A Next-Generation TRK Kinase Inhibitor Overcomes Acquired Resistance to Prior TRK Kinase Inhibition in Patients with TRK Fusion-Positive Solid Tumors

Cancer Discov. Published OnlineFirst June 3, 2017.