Supplemental Figure Legends

Supplemental Figure 1. *Attenuation of DGKα is toxic to glioblastoma cells* in vitro. Cell viability by alamarBlue assay was significantly reduced 72 hours after DGKα silencing in both U87 and U251 GBM cell lines. (*, P<0.05 and **, P<0.01 Student t test).

Supplemental Figure 2. *DGKa knockdown suppresses several oncogenic pathways*. Immunoblot analysis of U87 and U251 cell lysates exhibit a marked reduction in c-Myc and phos-AKT_{ser473} levels with DGKα knockdown.

Supplemental Figure 3. *DGKα modulates several oncogene-related pathways*. A, In both U87 and U251 cells, mRNA levels of FDPS1, FDPS2, HMGCR, and SCD were quantified by qRT-PCR in response to DGKα knockdown via siRNA and log-scale fold expression changes in comparison to control siRNA are shown. B, c-Myc was over-expressed through plasmid transfection after DGKα knockdown via siRNA and cell proliferation was assessed in U87 cells. (*, P<0.05 and **, P<0.01 Student t test).

Supplemental Figure 4. *Lentivirus infection with DGKα shRNA is efficient* in vitro. Lentiviral infection with DGKα shRNA was significantly cytotoxic to 0308 glioblastoma stem cells (GSCs), and immunoblot confirms the shRNA silencing of target. (*, P<0.05 and **, P<0.01 Student t test).

Supplemental Table 1. Data from The Cancer Genome Atlas (15) indicating amplification and mutation rates of DGKα in GBM and several other cancers.
Supplemental Table 2. A statistical analysis of 576 human GBM samples (15) was conducted to correlate DGKα and mTOR mRNA expression (plot shown in Figure 4).

Supplemental Table 3. Values of quantitative parameters supporting predicted BBB penetration by small molecule inhibitors R59022 and R59949 (47)

Supplemental Table 4. A statistical analysis was performed at each time point to assess the change in tumor volume of A, U87 and B, A-375 subcutaneous tumors treated with R59022 at 10 mg/kg compared to DMSO treatment.