Supplemental Figure 2. Similar total tumor burden and core genomic alterations in KPT-Early and KPT-Late mice

A. Expanding Tomatopositive cells from KPT-Early and KPT-Late mice have fully recombined KrasLSL-G12D and p53floxed alleles. Semi quantitative genomic PCR was used to assess the portion of KrasLSL-G12D alleles and p53floxed alleles that were recombined. Recombination in Tomatopositive cells from KPT-Early and KPT-Late mice was compared to a standard titration of p53floxed to p53/g54 or Kras1lox-G12D from tail and cell line DNA. Recombination efficiency was >95% for all samples. (* Background band.

B. To determine the relative tumor burden between KPT-Early and KPT-Late mice, immunohistochemistry was used to stain and count Tomatopos cells. Each dot represents a mouse and the bar represents the mean.

C. To estimate the total cancer burden in KPT-Early and KPT-Late mice we used semi quantitative genomic PCR to assess the percent of the p53floxed alleles that were recombined into the p53Δ form. p53 recombination in KPT-Early and KPT-Late total lung DNA was compared to a standard titration of p53floxed to p53Δ alleles to determine the tumor cell to normal cell ratio. Densitometry of the p53floxed and p53Δ PCR bands for the standards and experimental samples allowed the percent recombined p53 to be interpolated for each mouse. Each dot represents a mouse and the bar represents the mean.