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PI3K activation to support T308 phosphorylation.
To test whether inhibition of reactivated HER kinases 

sensitized the tumors to mTOR kinase inhibition, we evalu-
ated the effects of combining AZD8055 with lapatinib on 
the growth of BT-474 xenografts (Fig. 7C). We used a low 
dose of lapatinib, administered 3 times weekly, that had no 
antitumor activity when administered alone, to distinguish 
sensitization of the tumor to mTOR kinase inhibition from 
additive activity of the 2 drugs. Chronic AZD8055 treatment 
causes complete arrest of tumor growth with little or no evi-
dence of regression. After 11 days of treatment, the tumors 

of the drug. Induction of phosphorylation of EGFR, HER2, 
and HER3 also occurs in vivo at 4 hours. Phosphorylation of 
HER2 and EGFR, but not HER3, declines after 16 hours of 
drug exposure, after reactivation of AKT signaling. Of note, 
AKT T308 phosphorylation remains elevated at 24 hours, 
despite loss of HER2 phosphorylation. This finding suggests 
that PI3K activity remains elevated, perhaps via activation 
of other HER3 or other receptors. In sum, the data suggest 
that chronic inhibition of mTOR kinase in vivo leads to a new 
steady state with persistent inhibition of mTORC1; activated 
AKT phosphorylated on T308, but not S473; and enough 

BA

Figure 5.  mTOR kinase inhibition–induced reactivation of AKT substrates is HER2 and PI3K dependent. A, BT-474 cells were treated with 500 nM 
of AZD8055 and collected at the indicated times, and lysates were immunoblotted with indicated antibodies (panel 1 is the same as Fig. 2A, 
panel 1). After 8 hours of AZD8055 treatment, the cells were treated with either 1 μM of PI-103 (panel 2), or 200 nM of lapatinib (panel 3 in A). 
Each inhibitor was added for 1 extra hour (indicated as time 9), 4 extra hours (indicated as time 12), or 16 extra hours (indicated as time 24), and  
the lysates were immunoblotted with the indicated antibodies (see also Supplementary Fig. S4). B, BT-474 cells were treated simultaneously with 
both 500 nM of AZD8055 and 1 μM of lapatinib and were collected at the indicated times, and lysates immunoblotted with indicated antibodies.

Figure 6.  Addition of an AKT inhibitor to AZD8055 promotes apoptosis in BT-474 cells. A, BT-474 cells were treated with either 500 nM 
of AZD8055 or 2 μM of an AKT inhibitor or the combination for 48 hours. The fraction of apoptotic cells (sub-G1) was determined by flow 
cytometry. B, BT-474 cells were collected after 24 hours of treatment, and the lysates were analyzed by immunoblotting.
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show that this new steady state is caused by reactivation of 
AKT after initial inhibition, not by a decrease in drug concen-
tration in the cells. Reinduction of phosphorylation of AKT 
T308 and of AKT substrates is sensitive to AKT inhibition, 
but not to readdition of the mTOR kinase inhibitor. Our data 
demonstrate that this reinduction results from hyperactiva-
tion of PI3K. The relief of feedback inhibition of RTK sig-
naling brings about induction of PI3K activation. Although 
we have shown that AZD8055 activates RTK signaling more 
potently than does rapamycin, the increase in PI3K activity 
observed with the 2 drugs is equivalent. It is not clear whether 
other factors play a role in limiting PI3K activation or whether 
the in vitro kinase assays do not accurately reflect degree of 
induction of intracellular kinase activity. In tumors in which 
HER kinases are dysregulated, receptor blockade with tyrosine 
kinase inhibitors prevents reinduction of AKT T308 and AKT 
substrate phosphorylation. Taken together, our findings and 
those of others suggest the mechanisms that underlie the bi-
phasic effects of mTOR kinase inhibitors (27, 32). Inhibition 
of mTORC2 leads to rapid inhibition of AKT S473 phosphory-
lation, with attendant destabilization of phosphorylation at 
the T308 site. Release of feedback inhibition of receptor ty-
rosine kinase signaling function leads to activation of PI3K 
with the release of PIP3, which increases both PDK1 and AKT 
partition to the membrane and thus raises the rate of AKT 
T308 phosphorylation (37). The loss and then the reinduction 
of T308 phosphorylation and AKT activity result from these 
2 opposing effects. This observation is supported by our data; 
in cells expressing the AKT S473D mutant, AZD8055 causes 
a rapid monophasic rise in T308 phosphorylation that is not 
preceded by a decline (Fig. 2A). In contrast, in cells in which re-
lief of RTK feedback is inhibited, AZD8055 causes stable inhi-
bition of phosphorylation of T308 without rebound (Fig. 5A).

In cells in which mTOR kinase inhibitors relieve feedback 
inhibition of receptor tyrosine kinase, leading to activation 
of PI3K, the result is a new steady state in which mTORC1 is 
potently inhibited and AKT is phosphorylated on T308, but 

began to regrow, but more slowly than the controls. In con-
trast, combined treatment with AZD8055 and lapatinib 
caused persistent inhibition of growth over 3 weeks of treat-
ment and was associated with 35% regression of the tumor.

DISCUSSION
AKT and mTOR are key enzymes controlling major cellu-

lar processes, including cellular growth and metabolism; they 
each have been shown to regulate the activity of the other 
(12). We have now shown that the selective mTOR kinase 
inhibitor AZD8055 is an effective inhibitor of both mTORC1 
and mTORC2 activity but has complex effects on AKT signal-
ing. It potently inhibits both S6K and 4E-BP1 phosphoryla-
tion in cells, confirming that it is a better mTORC1 inhibitor 
than rapamycin; in addition, AZD8055 completely inhibits 
the phosphorylation of AKT S473, consistent with its effi-
cient inhibition of mTORC2, as well. Loss of AKT S473 phos-
phorylation is accompanied by concomitant inhibition of 
AKT T308 phosphorylation and kinase activity and causes 
decreased phosphorylation of multiple AKT substrates. Some 
of these results were predicted from Rictor knockdown ex-
periments, in which AKT T308 phosphorylation was shown 
to be inhibited, along with that of S473 (9), and have been 
obtained with other mTOR kinase inhibitors, as well (27, 
32). They suggest that inhibition of mTORC2 will lead to de-
phosphorylation of AKT at the T308 site and would result in 
a more profound inhibition of AKT function than would be 
expected from dephosphorylation of AKT S473 alone. Thus, 
mTOR kinase inhibition should prevent the feedback activa-
tion of AKT signaling that has attenuated the response of 
patients with rapamycin therapy.

However, in tumor cells exposed to the drug, even though 
mTORC2 inhibition is potent and persistent, inhibition of 
AKT T308 and of AKT substrate phosphorylation is only tran-
sient, occurring very quickly and then, 4 to 8 hours after target 
inhibition, rising to baseline or higher than baseline levels. We 

Figure 7.  mTOR kinase inhibition induced reactivation of AKT substrates and RTKs in vivo and can be blocked by addition of a HER kinase 
inhibitor. A, mice bearing BT-474 tumors were treated with increasing doses of AZD8055 for 4 hours; the samples were immunoblotted with 
the indicated antibodies. B, mice bearing BT-474 tumors were treated with 75 mg/kg of AZD8055 for the specified times; the samples were 
immunoblotted with the indicated antibodies. C, Mice bearing BT-474 tumors were randomized to vehicle, AZD8055 (75 mg/kg) 3 times per week, 
lapatinib (150 mg/kg) 3 times per week, or the combination for 3 weeks. Tumor size was measured twice per week. The results are presented as the 
mean tumor volume ± SEM (n = 5 mice/group).
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not on the S473 site. This AKT species is activated and able 
to phosphorylate key substrates in the cell (Supplementary 
Fig. S5). Whether the activity of AKT monophosphorylated 
on the T308 site differs from that of AKT phosphorylated 
on both residues, in the range or intensity of substrate phos-
phorylation, remains to be determined. Previously, selective 
deletion of mTORC2 activity in mouse embryonic fibroblasts 
with Rictor and mLST8 knockouts has been used to show 
that phosphorylation of most AKT substrates is mTORC2 
independent but that phosphorylation of FOXO proteins de-
pends on intact mTORC2 activity (38). Of note, we show in 
this article that phosphorylation of multiple AKT substrates, 
including FOXO, declines and then rises with phosphoryla-
tion of AKT T308, indicating that, in this system, AKT T308 
phosphorylation is enough to activate phosphorylation of 
AKT substrates, including FOXO.

The basis for the different effects of pharmacologic and ge-
netic ablation of mTORC2 inhibition on FOXO phosphory-
lation is unknown but could have to do with the different cell 
types used in the studies. Our data show that mTOR kinase 
inhibition does initially inhibit AKT activity, but this inhibi-
tion is limited by relief of feedback inhibition of receptor 
tyrosine kinases, leading to induction of PI3K activity. This 
induction of PI3K activation is likely to depend on which 
receptor tyrosine kinases are activated and whether their li-
gands are present. It is conceivable that in certain lineages, 
feedback reactivation of receptor tyrosine kinases is weak or 
occurs in contexts in which ligands are not available. In such 
cases, mTOR kinase inhibition will lead to inhibition of AKT 
activity, as well as inhibition of mTORC1 activity. In tumors 
in which mTORC1 inhibition leads to relief of RTK feedback, 
in the steady state, mTORC1 will be inhibited, but AKT, after 
initial inhibition, will be reactivated.

Emerging evidence suggests that dysregulated activation 
of oncoproteins leads to extensive feedback throughout 
the signaling network. We and others have partially char-
acterized the relief of negative feedback induced by modest 
mTORC1 inhibition with rapamycin or the potent and se-
lective inhibition of AKT (16, 35, 36). The results are consis-
tent with a model in which activation of AKT by receptors 
causes the coordinate feedback inhibition of receptor tyro-
sine kinase signaling and expression by mTOR and FOXO-
dependent mechanisms (35). mTOR activation causes the 
downregulation of IRS-1 and other signaling intermediates 
and inhibition of the HER and IGF-1R/insulin receptor ty-
rosine kinases, as well (7). Inhibition of FOXO transcription 
factors by AKT-dependent phosphorylation downregulates 
the expression of HER3, IGF-1R, and insulin receptors (35).

AKT inhibition coordinately relieves this feedback, inhibits 
mTOR, activates FOXO function, and causes induction of 
the expression and activity of HER3, IGF-1R/insulin recep-
tor, and other receptors. Rapamycin relieves feedback differ-
ently; inhibition of mTORC1 also induces receptor activation 
and IRS-1 expression and activates signaling. However, by 
further activating AKT, FOXO remains inhibited, and the 
receptor mRNAs are not induced (35). We show in this ar-
ticle that mTOR kinase inhibition leads to a third and more 
complex pattern of effects on these feedback pathways, with 
initial inhibition of AKT activity, which then recovers. This 
pattern is caused by a more highly marked reinduction of 

the phosphorylation of multiple HER kinases, IGF-1R, in-
sulin receptor, and other receptors than is seen with rapa-
mycin. The effect is likely due to a more complete inhibition 
of mTORC1 and to the transient potent inhibition of AKT 
activity by mTOR kinase inhibitors, which leads to an initial 
induction of both receptor expression and activity by these 
drugs, but only the latter by rapamycin.

These findings have important implications for the biol-
ogy of tumors with deregulated PI3K/AKT/mTOR signaling 
and for their treatment with inhibitors of components of the 
pathway. One prediction from the data is that certain recep-
tor tyrosine kinases are likely to be downregulated in these 
tumors unless feedback inhibition by AKT or mTOR has 
been altered by other genetic lesions. These tumors are un-
likely to be dependent on these receptors. This observation is 
especially true for IGF-1R, because IGF-1 signaling is power-
fully downregulated by multiple AKT- or mTOR-dependent 
feedback mechanisms, including downregulation of the ex-
pression of IGF-1R, insulin receptor, and their prime sub-
strates, IRS-1 and IRS-2. In tumors treated with inhibitors of 
the pathway, the tumor cell reactivates IGF-1 signaling and 
may survive in an IGF-1R–dependent fashion (39).

This reactivation may be a general feature of these tumors; 
feedback reactivation of receptor tyrosine kinase signaling 
may significantly reduce their sensitivity to mTOR kinase 
inhibitors. This reduction could occur via activation of PI3K/
AKT alone or, more likely, together with activation of other 
downstream players of the signaling pathway. mTOR kinase 
inhibitors and rapamycin have been noted to be predomi-
nantly cytostatic and to prominently induce autophagy, with 
only modest induction of apoptosis (24, 25, 40). AKT ac-
tivation has been shown to prevent apoptosis by multiple 
mechanisms, including phosphorylation of BAD (41) and ac-
tivation of NF-kB signaling (42). It is plausible that the rein-
duction of AKT signaling noted here plays an important role 
in suppressing apoptosis in tumors exposed to mTOR kinase 
inhibitors. Our finding that the AKT and mTOR kinase in-
hibitors induce synergistic apoptosis in the breast cancer cell 
line BT-474 is consistent with this hypothesis.

The idea that relief of feedback inhibition of receptor tyro-
sine kinases lessens the efficacy of PI3K pathway inhibition 
in patients is probable, but not yet proven. It does provide 
a framework for the rational design of therapeutic strategies 
that combine these drugs with inhibitors of reactivated path-
ways. The results of these trials will test the hypothesis. It is 
not yet clear whether mTOR kinase, AKT, or PI3K inhibitors 
will provide the greatest therapeutic index or whether they will 
need to be combined with inhibitors of individual receptors 
(e.g., IGF-1R, HER kinase) or of common downstream targets 
of these pathways (e.g., AKT, mitogen-activated protein/ERK 
kinase). The answer will probably vary as a function of tu-
mor lineage and genotype, as well as the therapeutic index 
of the combinations. Our studies do reveal that rapamycin, 
mTOR kinase inhibitors, and AKT inhibitors relieve different 
aspects of PI3K pathway–dependent feedback, and this may be 
important in differentiating their clinical effects (16, 35). We 
show in this article that combined inhibition of mTOR and 
HER kinase activity causes significant regression of a breast tu-
mor xenograft model, compared with the response elicited by 
the mTOR kinase inhibitor alone. These results and those of 
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primary antibody, followed by fluorescein-conjugated secondary 
antibody. Nuclei were stained with 4',6'-diamidino-2-phenylindole 
(DAPI). Slides were visualized using confocal microscopy. Confocal 
images were taken with Leica TCS AOBS SP2, using 63×/1.2 numeri-
cal aperture objective. Laser lines of 405 nm and 488 nm were used to 
excite DAPI and Alexa 488 dyes, respectively. The same settings were 
used to take images of cells in different conditions.

RTK Arrays
Phospho-RTK arrays (R&D Systems) were used according to the 

manufacturer’s instructions. Cells were washed with cold PBS and 
lysed in NP-40 lysis buffer, and 400 μg of cell lysates was incubated 
with blocked membranes overnight. Membranes were subsequently 
washed and exposed to chemiluminescent reagent and developed by 
autoradiography. The RTK coordinates are listed in Supplementary 
Materials and Methods.

Analysis of Cell Cycle and Apoptosis
Cells were plated in 10-cm dishes and treated with drug or vehicle 

(DMSO) the following day for 48 hours. Both adherent and floating 
cells were harvested, and the cell nuclei were prepared as described 
previously (44).

Animal Studies
Six-week-old nu/nu athymic female mice (National Cancer 

Institute–Frederick Cancer Center) were maintained in pressurized 
ventilated cages. Experiments were carried out under an Institutional 
Animal Care and Use Committee–approved protocol, and institu-
tional guidelines for the proper and humane use of animals in re-
search were followed as described previously (35). See Supplementary 
Materials and Methods for additional information.

Statistical Analysis
Results are mean values ± standard error. Statistical analyses were 

performed by an unpaired, 2-tailed Student t-test.
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