IN THIS ISSUE
Highlighted research articles 327

NEWS IN BRIEF
Important news stories affecting the community 332

NEWS IN DEPTH
Q&A: Olufunmilayo Olopade on Genomics and Breast Cancer 335
China Biotech Scene, U.S. Collaborations Grow 336

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 337

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/CDNews.

VIEWS
In The Spotlight
Unraveling the Architecture of Classic Hodgkin Lymphoma One Cell at a Time 342
D.A.C. Fisher and S.T. Oh
See article, p. 406

Regulatory T Cells Keep Pancreatic Cancer at Bay 345
B. Aykut, R. Chen, and G. Miller
See article, p. 422

TBK1 Activation by VHL Loss in Renal Cell Carcinoma: A Novel HIF-Independent Vulnerability 348
Z. Bakouny and D.A. Barbie
See article, p. 460

REVIEW
Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy 351
J. Chou, D.A. Quigley, T.M. Robinson, F.Y. Feng, and A. Ashworth

RESEARCH BRIEFS
Circadian Regulator CLOCK Recruits Immune-Suppressive Microglia into the GBM Tumor Microenvironment 371
Précis: The circadian-rhythm protein CLOCK was implicated in increasing stem-like properties of glioblastoma cells and promoting infiltration of immunosuppressive microglia in the tumor microenvironment.

Type I Interferon Regulates a Coordinated Gene Network to Enhance Cytotoxic T Cell–Mediated Tumor Killing 382
Précis: UBA7, encoded by an interferon-stimulated gene (ISG), suppressed tumor growth in mouse models of breast cancer via covalently conjugating the protein ISG15 to other ISG products, including STAT1/2, to mediate an antitumor immune response.

Acralabrutinib plus Obinutuzumab in Treatment-Naïve and Relapsed/Refractory Chronic Lymphocytic Leukemia 394
Précis: In a phase Ib/II clinical trial, the combination of obinutuzumab with the BTK inhibitor acralabrutinib was effective and tolerable in patients with treatment-naïve and relapsed/refractory chronic lymphocytic leukemia.

Single-Cell Transcriptome Analysis Reveals Disease-Defining T-cell Subsets in the Tumor Microenvironment of Classic Hodgkin Lymphoma 406
Précis: Single-cell RNA sequencing, immunohistochemistry, and imaging mass cytometry identified immunosuppressive LAG3+ T cells near malignant cells in the MHC class II− classic Hodgkin lymphoma microenvironment.

See commentary, p. 342

Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis 422

Précis: Contrary to prior results, Treg depletion in mouse models of pancreatic ductal adenocarcinoma sped carcinogenesis by altering the fibroblast and myeloid-cell populations in the tumor microenvironment.

See commentary, p. 345

Selective Inhibition of HDAC3 Targets Synthetic Vulnerabilities and Activates Immune Surveillance in Lymphoma... 440

Précis: The epigenetic and transcriptional effects of CREBBP hotspot mutations in diffuse large B-cell lymphoma (DLBCL) were reversed by HDAC3 inhibition, which synergized with PD-L1 blockade in a mouse model of DLBCL.

ON THE COVER
Cancer-cell stemness is associated with immunosuppression and poor prognosis in glioblastoma and many other malignancies. Chen and colleagues found that depletion of the circadian-rhythm gene CLOCK in glioma stem cells (GSC) led to reduced self-renewal capabilities and decreased markers of immunosuppressive microglia infiltration. Mechanistically, CLOCK-depleted cells had reduced levels of OLFML3, encoding a secreted protein involved in intercellular interactions. In mouse models, tumors derived from CLOCK-depleted GSCs were less aggressive than those derived from control GSCs, leading to increased survival in mice bearing CLOCK-depleted tumors, and exhibited reduced signs of stemness and microglia infiltration. Bolstering the proposed mechanism, tumors derived from OLFML3-depleted GSCs were also less aggressive than controls. For details, please see the article by Chen and colleagues on page 371.
CANCER DISCOVERY

10 (3)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/10/3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/10/3. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>