IN THIS ISSUE
Highlighted research articles 477

NEWS IN BRIEF
Important news stories affecting the community 480

NEWS IN DEPTH
Q&A: Antoni Ribas on Progress in Melanoma 483
Cancer Immunotherapy: Make Way for CAR NK 484

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 485

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/CDNews.

VIEWS
In The Spotlight
Letting the GENIE Out of Its Bottle: Examining the Potential of Real-World Clinicogenomic Data 490
E. Castellanos and S.S. Baxi
See article, p. 526

Not So FAST: Tumor Cells Resisting Death Drive CAR T-cell Dysfunction 492
M.R. Green and S.S. Neelapu
See article, p. 552

Deconstructing Pancreatic Adenocarcinoma by Targeting the Conductor, MYC 495
I.A. English and R.C. Sears
See article, p. 588

MINI REVIEW
Advances in Targeting RET-Dependent Cancers 498
V. Subbiah and G.J. Cote

REVIEW
Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges 506
N.J. Short, M. Konopleva, T.M. Kadia, G. Barthakur, F. Ravandi, C.D. DiNardo, and N. Daver

RESEARCH ARTICLES
Characteristics and Outcome of AKT1E17K-Mutant Breast Cancer Defined through AACR Project GENIE, a Clinicogenomic Registry 526
Précis: Data from AACR Project GENIE were used to investigate the effects of the rare AKT1E17K mutation in ER+ breast cancer, showing the challenges and advantages of using this type of real-world evidence.
See commentary, p. 490

Monocytic Subclones Confer Resistance to Venetoclax-Based Therapy in Patients with Acute Myeloid Leukemia 536
Précis: Compared with less differentiated acute myeloid leukemia (AML), monocytic AML is more resistant to venetoclax-based therapy, a phenomenon that may be attributable to dedifferentiation of preexisting monocytic subclones.
Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction 552
Précis: Response to CD19-directed CAR T cells in acute lymphoblastic leukemia was dependent on death receptor signaling, and exposure to ALL cells with impaired death receptor signaling caused CAR T cells to adopt an exhausted-like phenotype.
See commentary, p. 492

Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs 568
Précis: Minor subclones that are present at the time of diagnosis in B-progenitor acute lymphoblastic leukemia can cause relapse and exhibit distinct traits, including chemotherapy resistance, prior to treatment.

MYC Instructs and Maintains Pancreatic Adenocarcinoma Phenotype 588
Précis: In a mouse model of mutant Kras–driven pancreatic ductal adenocarcinoma (PDAC), Myc activation was required for progression to PDAC, whereas Myc deactivation caused rapid regression of even established PDACs.
See commentary, p. 495

Oncogenic KRAS-Driven Metabolic Reprogramming in Pancreatic Cancer Cells Utilizes Cytokines from the Tumor Microenvironment 608
Précis: In models of mutant Kras–driven pancreatic cancer, T172 cells in the tumor microenvironment produced the cytokines IL4 and IL13, which promoted metabolic reprogramming and tumorigenesis.

ON THE COVER Not all patients respond to CAR T-cell therapies, and the mechanisms behind this primary resistance are poorly understood. Singh, Lee, and colleagues found that deficits in death receptor signaling in acute lymphoblastic leukemia (ALL) cells can cause resistance to CD19-directed CAR T-cell therapy. Exposure to ALL cells in which death-receptor signaling was impaired caused CAR T-cell dysfunction that worsened with increasing exposure times. These dysfunctional CAR T cells exhibited a phenotype similar to that of exhausted T cells. Additionally, analysis of samples from clinical trials of CD19-directed CAR T cells showed that low expression of death receptor genes was associated with poorer response, demonstrating the clinical relevance of these findings. For details, please see the article by Singh, Lee, and colleagues on page 552.