CANCER DISCOVERY

MAY 2020 • VOLUME 10 • NUMBER 5

IN THIS ISSUE
Highlighted research articles 627

NEWS IN BRIEF
Important news stories affecting the community630

NEWS IN DEPTH
Cancer Labs Pivot to Battle COVID-19634

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 635

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/CDNews.

RESEARCH BRIEFS
Pan-Cancer Efficacy of Vemurafenib in BRAF\(^{V600E,Mutant\) Non-Melanoma Cancers657
Précis: In a phase II basket trial, the BRAF inhibitor vemurafenib showed preliminary evidence of efficacy in 13 BRAF-mutant non-melanoma tumor types, including some typically considered treatment refractory.
See commentary, p. 640

Plasma DNA End-Motif Profiling as a Fragmentomic Marker in Cancer, Pregnancy and Transplantation664
Précis: Short sequences at the ends of cell-free DNA fragments in plasma can be used to detect and assess pathophysiologic states, including cancer.

RESEARCH ARTICLES
HER2-Mediated Internalization of Cytotoxic Agents in ERBB2 Amplified or Mutant Lung Cancers674
Précis: Combining trastuzumab emtansine with irreversible pan-HER inhibitors—increasing HER2 ubiquitination and internalization—or switching to trastuzumab deruxtecan improves responses of ERBB2-mutant or -amplified lung tumors.
See commentary, p. 643

MINI REVIEW
Fibroblast Heterogeneity in the Pancreatic Tumor Microenvironment648
E. Helms, M.K. Onate, and M.H. Sherman
Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. 688

Précis: In a phase I trial, the antibody–drug conjugate trastuzumab deruxtecan had a manageable safety profile and showed promising preliminary evidence of efficacy in non-small cell lung cancer.

See commentary, p. 643

Tuning the Antigen Density Requirement for CAR T-cell Activity 702

Précis: The costimulatory and hinge–transmembrane domains of CAR-T cells can be manipulated to enhance their sensitivity to target cells expressing low levels of surface antigens.

Correction: Senescence Sensitivity of Breast Cancer Cells Is Defined by Positive Feedback Loop between CIP2A and E2F1 746

Précis: Integrative analyses revealed functional noncoding variants connecting enhancer dysregulation with nuclear-receptor signaling to modulate gene programs in leukemogenesis.

See commentary, p. 646

ON THE COVER Resistance to CAR-T cells can result from low expression of target antigens on cancer cells. In B-cell cancers, Majzner and colleagues found a high degree of intra- and interpatient heterogeneity in the expression of CAR-T cell target antigens. Importantly, though, the sensitivity of CAR-T cells to target-antigen level was tunable: CAR-T cells could be made more or less sensitive by altering their costimulatory and hinge–transmembrane (H/T) domains. Specifically, CD28 costimulatory and H/T domains (both as in axicabtagene ciloleucel) conferred more sensitivity than 4-1BB costimulatory domains and CD8 H/T domains (both as in tisagenlecleucel). For details, please see the article by Majzner and colleagues on page 702.