IN THIS ISSUE
Highlighted research articles 211

NEWS IN BRIEF
Important news stories affecting the community 214

NEWS IN DEPTH
How Cancer Vaccine Tech Shaped COVID Response 218

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 219

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/CDNews.

VIEWS
In The Spotlight

Lower Airway Dysbiosis Exacerbates Lung Cancer 224
L. Zitvogel and G. Kroemer
See article, p. 293

Shedding Light on Mutant Clonal Dynamics and Cancer Risk in the Skin 227
M. De Dominici and J. DeGregori
See article, p. 340

A Presynaptic Protein Is a Net Gain for Pancreatic Tumor Progression 230
M.H. Sherman
See article, p. 446

Science in Society

Priority COVID-19 Vaccination for Patients with Cancer while Vaccine Supply Is Limited 233

BLACK IN CANCER

Black in Cancer: Championing Diversity in Cancer Research and Medicine 237
H.J. Henderson and S. Bell

IN FOCUS

A Call to Action: Dismantling Racial Injustices in Preclinical Research and Clinical Care of Black Patients Living with Small Cell Lung Cancer 240

REVIEWS

Modes of Regulated Cell Death in Cancer 245
E. Koren and Y. Fuchs

Fueling the Fire: Inflammatory Forms of Cell Death and Implications for Cancer Immunotherapy 266
S.R. Rosenbaum, N.A. Wilski, and A.E. Aplin

RESEARCH BRIEFS

Somatic HLA Class I Loss Is a Widespread Mechanism of Immune Evasion Which Refines the Use of Tumor Mutational Burden as a Biomarker of Checkpoint Inhibitor Response 282

Précis: Across cancer types, loss of heterozygosity at the locus encoding HLA-I was an independent prognostic factor for response to immune checkpoint blockade, and its predictive power improved when combined with measures of tumor mutation burden.

Lower Airway Dysbiosis Affects Lung Cancer Progression 293
Precis: Genetic analyses of healthy aged human epidermal cells revealed skin site-specific mutational signatures, with common skin cancer sites exhibiting more potentially oncogenic mutations and with high variability in mutations under positive selection among sites.

See commentary, p. 227

Genetically Defined, Syngeneic Organoid Platform for Developing Combination Therapies for Ovarian Cancer 362

Precis: Organoids representing high-grade serous ovarian cancer were developed; these organoids exhibited varying sensitivities to chemotherapy drugs and elicited different immune responses, suggesting they may serve as a novel platform for discovery.

Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of Combination Immunotherapy 384

Precis: To address the inability of current high-grade serous tubo-ovarian carcinoma models to accurately recapitulate immunotherapy responses, a new mouse model was developed: proof-of-concept experiments uncovered follistatin as a mediator of response.

A TLR3 Ligand Reestablishes Chemotherapeutic Responses in the Context of FPR1 Deficiency 408

Precis: The TLR3 ligand polyinosinic-polyribocytidylic acid improved the efficacy of chemotherapy observed in the context of FPR1 loss-of-function mutation, which occurs in 30% of individuals and diminishes the antitumor immune response following chemotherapy.
The RNA m6A Reader YTHDF2 Maintains Oncogene Expression and Is a Targetable Dependency in Glioblastoma Stem Cells... 480
Précis: In glioblastoma stem cells, YTHDF2 (which reads mRNA for the modified nucleotide N^6-methyladenosine) stabilized MYC and VEGFA transcripts via an IGFBP3-mediated mechanism, and blocking IGF–IGF1R signaling in vivo hindered glioblastoma growth.

The Hepatic Microenvironment Uniquely Protects Leukemia Cells through Induction of Growth and Survival Pathways Mediated by LIPG 500
Précis: Liver-infiltrating leukemia stem cells in mice acquired a proliferative, chemotherapy-resistant phenotype characterized by over-expression of the gene encoding the lipase LIPG, which was sufficient to induce the same phenotype in non-liver-infiltrating leukemia cells.

Correction

Correction: Impact of PD-1 Blockade on Severity of COVID-19 in Patients with Lung Cancers 520

The risk of skin cancers such as basal cell carcinoma and squamous cell carcinoma varies greatly across the body, and it is known that healthy aged skin cells often harbor cancer driver mutations, but whether these observations are connected has not been determined. Fowler and colleagues discovered that the mutation density in healthy skin differed from location to location across the body. Common sites for skin cancer, such as the forearm, bore more mutations than uncommon sites, and the mutation profile suggested UV radiation as a cause. Interestingly, not only was there selection for cancer-associated mutations in healthy skin, but the DNA repair mechanisms used varied based on site. For more information, see the article by Fowler and colleagues on page 340.
CANCER DISCOVERY

11 (2)

Cancer Discov 2021;11:OF9-520.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/11/2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/11/2. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>