IN THIS ISSUE
Highlighted research articles .. 521

NEWS IN BRIEF
Important news stories affecting the community 524

NEWS IN DEPTH
What Biden’s Presidency Will Mean for Cancer 527

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 529

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/CDNews.

RESEARCH BRIEFS
Genetic Ancestry Contributes to Somatic Mutations in Lung Cancers from Admixed Latin American Populations 591

VIEWS
In The Spotlight
Genetic Ancestry Correlations with Driver Mutations Suggest Complex Interactions between Somatic and Germline Variation in Cancer 534
F. Gomez, M. Griffith, and O.L. Griffith
See article, p. 591

At the Heart of Immune Checkpoint Inhibitor-Induced Immune Toxicity 537
A. Young and J.A. Bluestone
See article, p. 614

Poorer Clinical Outcomes for Black Patients with AML: A Wake-Up Call for Better Data and Greater Understanding of Cancer Outcomes in All Ethnic Groups 540
P. Vyas
See article, p. 626

In Focus
Maturation Block in Childhood Cancer 542
S. Behjati, R.J. Gilbertson, and S.M. Pfister

REVIEWS
Opportunities and Challenges in Drug Development for Pediatric Cancers 545
T.W. Laetsch, S.G. DuBois, J. Glade Bender, M.E. Macy, and L. Moreno

Applications of CRISPR Genome Editing to Advance the Next Generation of Adoptive Cell Therapies for Cancer 560
S.M. Fix, A.A. Jazaeri, and P. Hwu

Diffuse Glioma Heterogeneity and Its Therapeutic Implications 575
J.G. Nicholson and H.A. Fine

Précis: Tumor sequencing data from patients with lung cancer from Latin America revealed that Native American ancestry significantly affected tumors’ somatic mutation profiles; the observed disparities arose from germline differences rather than environmental exposures.
See commentary, p. 534

A Critical Role for Fas-Mediated Off-Target Tumor Killing in T-cell Immunotherapy 599

Précis: Apoptotic FAS–FASL signaling enabled CD8+ T cells to exert cytotoxic effects on antigen-negative “bystander” tumor cells in vivo, possibly explaining how antigen-specific chimeric antigen receptor T-cell therapies can eliminate tumors with heterogeneous antigen expression.
ReSe
STea
S
and expression of an IFN-linked transcriptional program derived pancreatic ductal adenocarcinoma subgroup revealed the existence of an aggressive, ductal cell–prognosticating mutations (e
than white patients, a trend that held true supported by results from a patient case series
inhibitor–induced myocarditis was developed,
JWCME
Ductal Cell of Origin
Aggressive PDACs Show
See commentary, p. 537
Précis: A new mouse model of immune checkpoint inhibitor–induced myocarditis was developed, enabling the discovery that abatacept may be useful for ameliorating this condition; this finding was supported by results from a patient case series.

A Genetic Mouse Model Recapitulates Immune Checkpoint Inhibitor–Associated Myocarditis and Supports a Mechanism-Based Therapeutic Intervention
Précis: A new mouse model of immune checkpoint inhibitor–induced myocarditis was developed, enabling the discovery that abatacept may be useful for ameliorating this condition; this finding was supported by results from a patient case series.

Poor Survival and Differential Impact of Genetic Features of Black Patients with Acute Myeloid Leukemia
Précis: Black patients with AML fared worse than white patients, a trend that held true after adjusting for socioeconomic status and molecular features, and the impact of common prognosticating mutations (e.g., those in NPM1) differed between the two groups.

Aggressive PDACs Show Hypomethylation of Repetitive Elements and the Execution of an Intrinsic IFN Program Linked to a Ductal Cell of Origin
Précis: Transcriptomic and DNA methylation analyses revealed the existence of an aggressive, ductal cell–derived pancreatic ductal adenocarcinoma subgroup defined by low methylation of repetitive elements and expression of an IFN-linked transcriptional program.

Cell of Origin Influences Pancreatic Cancer Subtype
Précis: Pancreatic ductal adenocarcinomas in adult genetically engineered mice could arise from either ductal or acinar cells, and tumors arising from each cell type had distinct transcriptional profiles that matched those of defined human pancreatic cancer subtypes.

The Lipogenic Regulator SREBP2 Induces Transferrin in Circulating Melanoma Cells and Suppresses Ferroptosis
Précis: Melanoma circulating tumor cells (CTC) prevented ferroptotic death by upregulating SREBP2-mediated lipogenic pathways and iron homeostatic pathways, and blocking this escape mechanism by knocking out the gene encoding transferrin hindered CTC tumor formation.

An Empirical Antigen Selection Method Identifies Neot antigens That Either Elicit Broad Antitumor T-cell Responses or Drive Tumor Growth
Précis: An ex vivo bioassay, ATLAS, was able to identify stimulatory and inhibitory neot antigens for the design of personalized anticancer vaccines; this assay pinpointed anti- and protumorigenic antigens, as demonstrated via in vivo experiments.

Durable Suppression of Acquired MEK Inhibitor Resistance in Cancer by Sequestering MEK from ERK and Promoting Antitumor T-cell Immunity
Précis: Type II RAF inhibitors provided distinct advantages over Type I RAF inhibitors when used in combination with MEK inhibitors in models with MAPK pathway alterations.
The pattern of somatic mutations in lung cancers varies among populations, including in Latin America, where lung cancer is the primary cause of cancer death. Using tumor-sequencing data from 601 and 552 patients with lung cancer (43% of whom did not smoke) from Mexico and Colombia, respectively, Carrot-Zhang and colleagues identified relationships between Native American ancestry and several important tumor characteristics. For instance, EGFR mutations, particularly oncogenic ones, were more common in those with higher Native American ancestry. The identified differences in somatic mutation profiles arose from germline variation rather than disparate environmental exposures. This work highlights the importance of the finer details of ancestry in cancer genetics. For more information, see the article by Carrot-Zhang and colleagues on page 591.