Epithelial ovarian cancer is a chemoresponsive but less frequently chemocurable disease. During the last 3 decades, 5-year survival has increased from 37% to 46% (1) as the result of more frequent application of cytoreductive surgery and the use of combination chemotherapy with platinum compounds and taxanes. Despite an improvement in average survival, the overall rate of cure has not changed and remains less than 40%. Furthermore, the rate of cure of the most common and aggressive form of ovarian cancer, high-grade serous ovarian cancer, is even worse. Empirical addition of other conventional cytotoxic drugs with clinical activity against ovarian cancer has not improved outcomes (2).

Given the limitations in treatment with conventional drugs, great hope has been placed on personalized therapy with targeted agents (3). To date, however, individual targeted agents have had only a modest impact on recurrent ovarian cancer in unselected patients. With the exception of bevacizumab, 8 targeted drugs (gefitinib, imatinib, sorafenib, temsirolimus, miltefosine, enzastaurin, lapatinib, and vorinostat) have produced objective response rates of less than 10% and have stabilized disease for 6 months in less than 25% of cases in phase II trials. It is now apparent that in high-grade serous ovarian cancer, in as many other solid tumors, critical dependence on a single driving gene or “oncogene addiction” will be rare. Combinations of targeted agents will be required to produce synthetic lethality and to achieve a significant rate of durable clinical response. Considering the number of possible targets, preclinical studies must inform the choice of agents evaluated in the clinic.

Ovarian cancers exhibit remarkable heterogeneity at a clinical, cellular, and molecular level. Traditionally, ovarian cancers have been classified morphologically by histotype and grade. Different histotypes can resemble the epithelial cells found in normal gynecologic tissues, including fallopian tube (serous), endometrium (endometrioid), endocervical glands (mucinous), and glycogen-rich vaginal rests (clear cell). Among frankly invasive cancers, the most important morphologic distinction has been between low and high grade, prompting the classification of ovarian cancers into 2 categories. Type I lesions constitute 10% to 20% of ovarian cancers and include low-grade serous, mucinous, endometrioid, and clear-cell histotypes. Low-grade type I cancers present in early stage (I–II), grow slowly, and are relatively resistant to platinum-based chemotherapy. Type II lesions include high-grade serous and undifferentiated cancers that present at late stage (III–IV) and grow more aggressively, but respond more frequently to platinum-based treatment.

The profile of genetic changes differs remarkably between type I and type II ovarian cancers, indicating that they likely represent independent diseases or differentiation pathways and rarely, if ever, interconvert. Type I low-grade cancers have near-normal gene copy number, maintain wild-type p53, and appear to be driven by activating mutations of RAS and PIK3CA, inactivating mutations of PTEN, and expression of insulin-like growth factor receptor. Type II high-grade cancers have marked genomic instability and p53 mutation in nearly all cancers (4). Dysfunction of homologous DNA repair is mediated by mutation or silencing of BRCA1 or BRCA2 in more than 40% of high-grade type II cancers, with multiple other aberrations in the homologous repair pathway occurring at lower frequencies (4).

In addition, changes in DNA copy number appear to be critical drivers of malignant transformation of type II cancers. At least 22 amplified growth stimulatory genes encode potentially druggable targets in high-grade serous cancers. Whether these genes are drivers of ovarian cancer whose inhibition would impact patient outcomes remains to be determined in carefully designed clinical trials. Aside from inactivating mutations of p53 (96%), BRCA1, or BRCA2 (20%), high-grade type
II cancers have a significant number of mutations in only 4 genes: NFI (4%), R1 (2%), CSMD3 (6%) and CDK12 (3%). The remaining genes are mutated in <1% of type II ovarian cancers, on the basis of the recent Cancer Genome Atlas analysis of more than 300 clinical specimens (3).

Abnormalities of phosphatidylinositol 3' kinase (PI3K) signaling have been detected in both type I and type II ovarian cancers. The PI3K pathway can be activated by mutation or amplification of its intrinsic signaling molecules or by upstream activation of Ras or receptor tyrosine kinases. Furthermore, loss of negative regulators such as PTEN or INPP4B can also result in pathway activation. The first indication of aberrations targeting the PIK3CA pathway in ovarian cancer was the demonstration of AKT2 amplification (5). This was followed by the demonstration of PIK3CA amplification as a common event in ovarian cancer (6). In both cases, the teams demonstrated that the aberrations were associated with pathway activation and response to PI3K pathway inhibitors (7). Subsequent studies, and in particular the Cancer Genome Atlas effort, have provided a more detailed understanding of the spectrum of aberrations in the PI3K pathway in ovarian cancer.

A fraction of low-grade type I ovarian cancers have activating mutations of KRAS (>20%) and PIK3CA (40%), as well as inactivating mutations of PTEN (3%-8%). Moreover, expression of PTEN can be lost in 27% of type I endometrioid ovarian cancers through multiple mechanisms, including promoter methylation. Subsets of high-grade type II cancers exhibit amplification of KRAS (11%), HER2 (1%), and PIK3CA (17%). Furthermore, all 3 isoforms of AKT are highly amplified in type II cancers: AKT1 in 3%, AKT2 in 6%, and AKT3 in 8% of tumors. Overall, 20% of high-grade type II cancers have demonstrable aberrations in the PI3K pathway in terms of copy number at the DNA level and when expression is considered, 46% of patients demonstrate aberrations and thus possess the quality of “PI3Knness.” However, whether amplification or deletion of pathway members, and in particular changes in expression levels, results in pathway activation and whether these changes drive tumor behavior such that targeted therapies would improve patient outcomes needs to be tested. In addition, several of these genes are located in large amplicons or deletions and may not be drivers of the amplification.

Within the PI3K signaling pathway, AKT regulates a number of cellular functions, including growth, proliferation, metabolism, motility, survival, and angiogenesis (8). Serine-threonine phosphorylation of critical substrates affects glucose uptake, glycogen synthesis, protein synthesis, cell-cycle control, apoptosis, and transcription factors, including the FOXO family and NF-κB. Among the 3 AKT isoforms, AKT1 is widely distributed in normal tissues and is critical for cell growth and survival, AKT2 has been detected in muscle and adipocytes and is regulated by insulin, and expression of AKT3 is found primarily in normal brain and testes. All 3 AKT isoforms can transform cells in culture (9). In human malignancy, amplification or overexpression of AKT2 has been observed in colorectal, hepatic, and pancreatic as well as in ovarian cancer (4).

In this issue of Cancer Discovery, Hanrahan and colleagues (10) studied 17 well-characterized ovarian cancer cell lines to correlate response to AKT inhibitors with activation of the target and the presence of other genetic alterations. Activation of AKT was necessary but not sufficient to assure growth inhibition by isoform-selective or pan-AKT inhibitors. Despite phosphorylation and activation of AKT, the majority of ovarian cancer cell lines did not respond to AKT inhibition. In cancers that expressed AKT3, a pan-AKT inhibitor was more effective than an inhibitor with selective activity for AKT1 and AKT2. Cancer cell lines with activating mutation of RAS or inactivating mutations of RB were relatively resistant to AKT inhibition.

Because each cancer cell line is derived from a single patient, the use of panels is likely to have greater predictive value, particularly if their molecular abnormalities resemble precisely those found in cancer cells taken directly from patients. In the past, less than 10% of ovarian cancers obtained at surgery could be established as immortal lines in cell culture. Cell lines that could be established in culture are likely to have been highly selected for the ability to survive ex vivo. Many of the ovarian cancer cell lines used in the present study have been maintained in culture for many years and may have undergone genetic drift. As the authors discuss, there is only a loose correlation between the distribution of genetic lesions found in the Cancer Genome Atlas study and the cell lines used in the present report. Perhaps of greatest concern is that only 1 of the 17 lines had amplification of AKT2 and none had amplification of AKT1 or AKT3. Only a single cell line had amplification of KRAS.

A number of other aberrations, including p53 mutation, were not assessed in these cell lines. Activation of the PI3K pathway in these cell lines is largely through mutation of PIK3CA, AKT, Pten, and RAS, which are characteristic of the less common type I cancers but not of the prevalent high-grade type II cancers that constitute the major challenge in the clinic. Recent development of culture media that permits establishment of cell lines from >80% of ovarian cancers should facilitate development of new cell lines from type II cancers that preserve the relevant genetic and epigenetic changes.

The finding that activation of AKT is necessary but not sufficient to assure response to AKT inhibitors is similar to previous studies of inhibitors targeting PI3K or mTOR or both. RAS signaling abrogated sensitivity to AKT inhibitors, confirming earlier observations with other tumor types (11). In the setting of ovarian cancer, this clearly has relevance to management of low-grade type I cancers. If RAS amplification has the same impact on signaling as mutation, a fraction of patients with type II cancer should benefit from coordinate inhibition of both the RAS and PI3K pathways. Importantly, inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and of AKT produced greater inhibition of ovarian cancer cell growth than inhibition of AKT alone. The observation that RB mutation also antagonizes the functional impact of AKT inhibition is novel and suggests that RB signaling may be downstream of AKT in ovarian cancers as well as nonmalignant cells (12). Although RB is mutated in only 2% of type II ovarian cancers, dysregulation of the RB pathway can occur in up to 67% of cases (3). Consequently, careful analysis of genes involved in cell-cycle regulation may be important in choosing targeted therapy to combine with AKT inhibitors.
Although RAS and RB dysregulation can affect the response to AKT inhibition, in one recent report authors suggest that selection of patients with genetic abnormalities that enhance PI3K pathway signaling can increase the fraction of patients who respond to inhibitors of the pathway (13). In phase I trials at MD Anderson Cancer Center, mutational analysis of PI3K pathway members was performed on cancers from 161 patients that could be matched to PI3K pathway–targeted phase I drugs, 131 who could not be matched, and 438 who were not tested. Although this was a heterogeneous group of patients, 29% responded when matched, 8% responded when not matched, and 6% responded if not tested. At least one ovarian cancer patient was a major responder in these studies.

The present report suggests that although individual AKT inhibitors are likely to help only a small fraction of patients with high-grade serous ovarian cancer, carefully chosen combinations of targeted therapy could have greater activity. Choosing the second target will require biopsy and analysis of recurrent cancer before and perhaps during treatment with AKT inhibitors. Given the complexity and heterogeneity of ovarian cancer, “PI3Knness” must be dissected for each patient.

Disclosure of Potential Conflicts of Interest

G.B. Mills received grant support (GlaxoSmithKline, Sanofi, Exelixis, Celgene, Roche, and AstraZeneca) and consulting fees (Daiichi, GlaxoSmithKline, Novartis). R.C. Bast Jr disclosed no potential conflicts of interest.

Acknowledgments

This work was supported by funds from the MD Anderson SPORE in Ovarian Cancer NCI P50 CA83639; the MD Anderson CCSG NCI P30 CA16672; a Stand Up To Cancer Dream Team Translational Research Grant, a program of the Entertainment Industry Foundation (SU2C-AACR-DT0209); the National Foundation for Cancer Research; the Ovarian Cancer Research Fund; and philanthropic support from The Zarrow Foundation and Stuart and Gaye Lynn Zarrow.

Received December 5, 2011; accepted December 6, 2011; published online January 12, 2012.

REFERENCES

Dissecting "PI3Kness": The Complexity of Personalized Therapy for Ovarian Cancer

Robert C. Bast, Jr and Gordon B. Mills


Updated version
Access the most recent version of this article at:
http://cancerdiscovery.aacrjournals.org/content/2/1/16

Cited articles
This article cites 12 articles, 3 of which you can access for free at:
http://cancerdiscovery.aacrjournals.org/content/2/1/16.full#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
http://cancerdiscovery.aacrjournals.org/content/2/1/16.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerdiscovery.aacrjournals.org/content/2/1/16.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.