CONTENTS

AUGUST 2012 • VOLUME 2 • NUMBER 8

IN THIS ISSUE

Highlighted research articles653

NEWS IN BRIEF

Important news stories affecting the community656

Q&A: Stephen Friend on a Bioinformation Commons658

PARP Inhibitors Refocus for Rebound659

A Deeper Look at Tumor Heterogeneity660

RESEARCH WATCH

Selected highlights of recent articles of exceptional significance from the cancer literature661

ONLINE

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

RESEARCH ARTICLES

First-in-Human Trial of a STAT3 Decoy Oligonucleotide in Head and Neck Tumors: Implications for Cancer Therapy694

Précis: Intratumoral injection of a STAT3 decoy oligonucleotide safely reduced target gene expression in a phase 0 clinical trial, and chemical modification may enable systemic delivery.

In The Spotlight

RAF/MEK Dependence of KRAS-Mutant Pancreatic Ductal Adenocarcinomas666

A.J. Hanrahan and D.B. Solit

Commentary on Hanrahan et al., p. 666

STATe-of-the-Art Approach: Using Oligonucleotide Decoys to Target the "Undruggable"670

P. Koppikar and J. Bromberg

Commentary on Koppikar et al., p. 670

Turn Off the IDO: Will Clinical Trials Be Successful673

S.V. Novitskiy and H.L. Moses

Commentary on Novitskiy et al., p. 673

Discovery in Context: Leveraging Multidimensional Glioblastoma Datasets to Identify Targetable Regulatory Networks676

I. Babic and P.S. Mischel

Commentary on Genovese et al., p. 736

Mechanisms of BRCA1 Tumor Suppression679

D.P. Silver and D.M. Livingston

A Central Role for RAF→MEK→ERK Signaling in the Genesis of Pancreatic Ductal Adenocarcinoma685

Précis: Pancreatic ductal adenocarcinomas harboring KRAS mutations are dependent on RAF signaling and are sensitive to MEK inhibition.

PARP Inhibitors Refocus for Rebound680

A Deeper Look at Tumor Heterogeneity660

RESEARCH BRIEF

A Central Role for RAF→MEK→ERK Signaling in the Genesis of Pancreatic Ductal Adenocarcinoma685

Précis: Pancreatic ductal adenocarcinomas harboring KRAS mutations are dependent on RAF signaling and are sensitive to MEK inhibition.

First-in-Human Trial of a STAT3 Decoy Oligonucleotide in Head and Neck Tumors: Implications for Cancer Therapy694

Précis: Intratumoral injection of a STAT3 decoy oligonucleotide safely reduced target gene expression in a phase 0 clinical trial, and chemical modification may enable systemic delivery.
The Outgrowth of Micrometastases Is Enabled by the Formation of Filopodium-like Protrusions.
T. Shibue, M.W. Brooks, M.F. Inan, F. Reinhardt, and R.A. Weinberg
Précis: The formation of integrin β_1-containing protrusions mediates FAK signaling to promote metastatic cell proliferation and colonization.

IDO Is a Nodal Pathogenic Driver of Lung Cancer and Metastasis Development
Précis: IDO orchestrates inflammation, vascularization, and immunosuppression to establish a protumorigenic environment in lung cancer and metastasis models.

microRNA Regulatory Network Inference Identifies miR-34a as a Novel Regulator of TGF-β Signaling in Glioblastoma
Précis: miR-34a functions as a subtype-specific tumor suppressor in glioblastoma through targeted inhibition of SMAD4-regulated transcription.

Correction
Correction: High Frequency of PIK3R1 and PIK3R2 Mutations in Endometrial Cancer Elucidates a Novel Mechanism for Regulation of PTEN Protein Stability
Sen and colleagues conducted an exploratory, first-in-human phase 0 trial that showed that intratumoral injection of a STAT3 decoy oligonucleotide during tumor resection surgery could safely reduce STAT3 target gene expression in head and neck squamous cell carcinomas (HNSCC). Modification of the STAT3 decoy by linkage or circularization of the 2 strands increased its stability in vitro, which facilitated systemic administration of the STAT3 decoy in vivo. Intravenous injection of a cyclic STAT3 decoy, but not the parental decoy, decreased STAT3 target gene expression in HNSCC xenografts and significantly suppressed tumor growth. For details, please see the article by Sen and colleagues on page 694.