donors, $20 million from the Kansas Masonic Foundation, and $5 million a year since 2007 from the state—have helped fund the remodeling projects. Since 2009, a sales tax of one-eighth cent in Johnson County, Kansas, home to KUCC, has generated about $5 million a year for the clinical research center.

Recognized for clinical excellence in blood, breast, head and neck, and prostate cancers, KUCC is also highly regarded for its basic science and clinical research efforts, including drug discovery and development.

KUCC has also fostered an affiliation with Kansas City's Stowers Institute for Medical Research, which conducts basic biomedical research. "Without support from the Stowers Institute, it would've been very difficult to make this happen," Jensen said of the new designation.

Researchers at the University of Kansas Cancer Center, including MD-PhD student Anand Venugopal, have uncovered a possible link between the protein RBM3 and stem cell–like characteristics in several types of solid tumors, including colorectal cancer.

CellMiner Integrates NCI-60 Genomic, Pharmacologic Data

The cancer field is awash in data capturing the molecular activity of cancer cells and their responses to anticancer compounds. But the resulting databases have become so large and complex that their information may be virtually inaccessible to many researchers trying to understand cancer and develop better treatments.

"There's been a big barrier between the people who need this information and those trained in bioinformatics who are able to access it," says William C. Reinhold, a pharmacology researcher at the National Cancer Institute's (NCI) Center for Cancer Research. "We created a toolkit called CellMiner to help bridge that barrier and make this information readily accessible to any researcher."

CellMiner, freely available at http://discover.nci.nih.gov/cellminer, integrates tools for analyzing drug activity, gene expression, and microRNA expression in the NCI-60, widely used cancer cell lines developed by the NCI for testing drug candidates.

The suite of Web tools features a pattern comparison tool that identifies statistically significant correlations between gene expression and drug activity profiles, or other patterns of interest, and that also allows input from individual experiments. "This used to be a long, cumbersome process," says Reinhold, who is first author on a *Cancer Research* paper describing CellMiner (Cancer Res 2012;72:3499–511). "Now it happens automatically. All you need to know is what you want to compare."

One prime application will be comparing drugs and genetic targets to identify compounds that could be effective against different forms of cancer. In an example cited in the paper, the researchers looked at colon cancer patterns and found a new compound that potentially may show greater anticancer activity than 3 compounds in clinical trials.

CellMiner currently includes data from 22,379 genes and 360 microRNAs catalogued in the NCI-60 and from 20,503 previously analyzed chemical activity profi les, or other patterns of interest, and that also allows input from individual experiments. "This used to be a long, cumbersome process," says Reinhold, who is first author on a *Cancer Research* paper describing CellMiner (Cancer Res 2012;72:3499–511). "Now it happens automatically. All you need to know is what you want to compare."

One prime application will be comparing drugs and genetic targets to identify compounds that could be effective against different forms of cancer. In an example cited in the paper, the researchers looked at colon cancer patterns and found a new compound that potentially may show greater anticancer activity than 3 compounds in clinical trials.

CellMiner currently includes data from 22,379 genes and 360 microRNAs catalogued in the NCI-60 and from 20,503 previously analyzed chemical