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 Figure 6.      TCAs inhibit the growth of several other types of neuroendocrine tumors. A, heatmaps showing the normalized RNA expression levels of the 
H1R, CHRM3, ADRA1A, ADRA1B, and HTR2 in 35 human primary Merkel cell carcinomas, 42 midgut carcinoid tumors, 76 pheochromocytomas, and 
88 neuroblastomas. B and C, MTT viability assays of human pancreatic adenocarcinoma (PDAC), mouse pancreatic neuroendocrine tumors (PNET), human 
neuroblastoma (NB), human Merkel cell carcinoma (MCC), human large cell adenocarcinoma (LCLC), and neuroendocrine large cell lung carcinoma (NE-LCLC) 
cultured in low serum and treated with increasing doses of imipramine (B) and promethazine (C) for 48 hours. Values from three independent experiments 
are shown as the mean ± SEM. *,  P  < 0.05; **,  P  < 0.01; ***,  P  < 0.001; ns, not signifi cant. D, representative H&E images (top) and insulin immunohistochemistry 
(IHC; bottom) of sections from the pancreas of wild-type and  RIP-Cre Rb/p53/p130 –mutant mice. Scale bar is 50 μm. E, survival curve generated from the 
 RIP-Cre Rb/p53/p130  mice treated daily with intraperitoneal injections of saline and imipramine starting at day 35 after birth; median survival is 58 days for 
saline- and 74.5 days for imipramine-treated mutant mice;  P  = 0.024 by the Mantel–Cox test.   
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GPCRs and their ligands in SCLC cells and to determine how 

these loops promote the survival of SCLC cells. 

 We have made a substantial effort to identify patients who 

may have been treated with TCAs incidentally as part of their 

routine care. Promethazine is sometimes used for nausea, 

but its heavily sedating effects limit its outpatient use to 

infrequent use. Much more commonly, the preferred pheno-

thiazine antiemetic drug is prochlorperazine, as it is much 

less sedating. Even this drug is received only intermittently 

for the primary prevention of nausea from cisplatin and other 

chemotherapies. We have searched the electronic portion of 

the Stanford medical record (dating back to around the year 

2000) for patients who received a TCA, and found fewer than 

fi ve patients, none of whom were on the drugs chronically. 

Similarly, other database searches did not yield high patient 

numbers. On the basis of our preclinical results, prospective 

validation of these fi ndings in a clinical trial setting has begun 

(NCT01719861—A phase IIa trial of desipramine in small cell 

lung cancer and other high-grade neuroendocrine tumors), 

but reportable results are not expected for years. An advantage 

of a drug-repositioning approach with approved medications 

for other indications is accelerated drug development times. 

 TCAs have largely been replaced in the clinic by a new gen-

eration of selective serotonin reuptake inhibitors. However, the 

anticancer effects of TCAs are in large part due to the less-

specifi c, “off-target” mode of action of these drugs, which target 

multiple molecules at the surface of cells. The monoamine oxi-

dase inhibitors tranylcypromine and pargyline do not antago-

nize these GPCRs and are not effi cient in inducing cell death in 

SCLC cells. The fact that TCAs target multiple surface molecules 

has important consequences for patients with cancer: fi rst, our 

analysis of gene expression profi les of SCLC and other neuroen-

docrine tumors indicates that most, if not all, individual tumors 

express at least one of these GPCRs. Thus, the vast majority of 

neuroendocrine tumors may be at least partly responsive to TCA 

treatment. In addition, acquired resistance to TCA treatment 

may take a long time to occur. Additional  experiments in pre-

clinical mouse models and early-phase clinical trials in patients 

with these FDA-approved drugs may help in rapidly identifying 

ways to translate these observations to better treatment options 

for patients with neuroendocrine tumors. 

 Finally, we believe that imipramine and other related TCAs 

could potentially be used as a second-line therapy in patients 

with SCLC who become refractory to cisplatin/etoposide. 

Our studies indicate that cisplatin-resistant tumors are still 

sensitive to imipramine treatment. We have tested the effects 

of combining imipramine with cisplatin at the early stages 

when the tumor was still sensitive to cisplatin  in vivo , but 

we did not observe a signifi cantly greater decrease in tumor 

growth compared with imipramine alone or cisplatin alone 

at the concentrations used; both drugs induce apoptotic 

cell death and may not induce more death together (data 

not shown). Moreover, the side-effect profi le of TCAs is not 

benign, and combining with chemotherapy likely will sub-

stantially increase toxicity in a patient population with often 

compromised functional status, further reducing potential 

clinical benefi t. On the basis of these observations, we pro-

pose that TCAs in the platinum refractory setting or as 

maintenance treatment after chemotherapy may be the most 

useful settings for these candidate drugs in clinical trials.   

 METHODS  
  Ethics Statement  

 Mice were maintained according to practices prescribed by the 

NIH  (Bethesda, MD) at Stanford’s Research Animal Facility, accred-

ited by the Association for the Assessment and Accreditation of 

Laboratory Animal Care (AAALAC).    

  Drug-Repositioning and Bioinformatics Approach  
 The drug-repositioning analysis was based on a systematic 

approach described previously ( 4, 5 ). Detailed information can be 

found in the Supplementary Data.   

  Mice, Adenoviral Infections, and Subcutaneous Xenografts  
 The SCLC mouse model bearing deletions in  p53 ,  Rb , and  p130  (triple 

knockout) was previously described ( 15 ). The pancreatic neuroendo-

crine cancer mouse model is based on the deletion of  Rb ,  p53 , and  p130  

in insulin-producing cells ( RIP-Cre Rb/p53/p130 , similar to the RIP-Tag 

model; ref.  43 ). This mouse model will be described in detail elsewhere. 

Ad-Cre (Baylor College of Medicine, Houston, TX) infections were car-

ried out as previously described ( 14 ). Mice were maintained at the Stan-

ford Research Animal Facility, accredited by the AAALAC. NSG mice 

were housed in the barrier facility at Stanford University (Stanford, CA). 

For the endogenous SCLC mice, treatment started 5 months after Ad-

Cre infection. Imipramine (25 mg/kg), promethazine (25 mg/kg), and 

bepridil (10 mg/kg) were administered intraperitoneally daily for 30 

consecutive days, whereas cisplatin (5 mg/kg) was administered intra-

peritoneally once weekly for a total of 6 to 8 weeks until tumors became 

chemoresistant. Chemonaïve tumors were generated after weekly injec-

tion of saline for a total of 6 weeks. Growth of these endogenous mouse 

tumors was monitored weekly by live imaging using Xenogen In Vivo 

Imaging System  in the animal imaging facility at Stanford University, 

and quantifi cation of the luciferase activity was calculated using the 

Living  Image software. For subcutaneous injections, 0.5 × 10 6  mSCLC 

(Kp1, Kp3, saline-treated chemonaïve, and cisplatin-treated chemore-

sistant), and 2 × 10 6  hSCLC (H187 and H82) cells were injected into 

the two fl anks of each NSG mouse with Matrigel (1:1; BD Biosciences). 

Treatment with the drugs started once the SCLC tumors reached 100 

to 150 mm 3  (around 10–14 days after implantation). Imipramine 

(25  mg/kg), promethazine (25 mg/kg), and bepridil (10 mg/kg) were 

administered intraperitoneally daily for 36 to 48 consecutive days. 

Tumor volume was measured at the times indicated and calculated 

using the ellipsoid formula (length × width 2 ). The human primary 

SCLC sample was obtained from the National Disease Research Inter-

change  program at the NIH. The tumor was digested with colla-

genase and dispase (Roche). Cells were collected and passed through 

a  Magnetic-Activated Cell Sorting (Miltenyi Biotec)  magnetic beads 

column to deplete CD45 +  blood cells. The remaining cells were injected 

into the fl ank of NSG mice with Matrigel (1:1) for expansion. Single-

cell suspensions (1 × 10 6  and 3 × 10 6 ) from this new primary cell line 

(NJH29) were used for the primary human xenograft studies. Treatment 

with the drugs started once the xenografts reached 100 to 150 mm 3 . 

Saline, imipramine (25 mg/kg), and promethazine (25  mg/kg) were 

administered intraperitoneally daily for 24 consecutive days.   

  Drugs and Inhibitors  
 Imipramine, promethazine, clomipramine, bepridil, necrostatin-1, 

azelastine, epinephrine, acetylcholine, serotonin, the histamine ana-

log 2-(2-pyridyl) ethylamine, forskolin, and IBMX were all purchased 

from Sigma-Aldrich. Z-VAD-FMK, ritanserin, 4-DAMP, doxazosin 

mesylate, H89 dihydrochloride, KH7, and GF109203X were all pur-

chased from Tocris Bioscience. The JNK inhibitor SP600125 was 

purchased from LC Laboratories. Fluo-3AM was purchased from 

 Invitrogen. All these powders were dissolved in the appropriate sol-

vent according to the manufacturer’s instructions.   
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  Cell Lines and Tissue Culture  
 Mouse SCLC cells (Kp1, Kp2, and Kp3) were grown in RPMI-1640 

media containing 10% bovine growth serum (Fisher Scientifi c; ref.  15 ) 

or dialyzed FBS (dFBS; Fisher Scientifi c). NCI-H82 , NCI-H69, and NCI-

H187 human SCLC cells were obtained from American Type Culture 

Collection (ATCC) and cultured in RPMI media containing 10% serum. 

For the original cellular assays, we used the H82 cells because they 

grow very rapidly and enough cells can be obtained to conduct most 

of these assays. However, because they are the least sensitive of all three 

human SCLC cell lines, we used the other cell lines in the subsequent 

mechanistic experiments to investigate the mechanism of action of the 

drugs. The NSCLC cell lines A549 and LKR13 were a generous gift from 

Dr. A. Sweet-Cordero’s laboratory (Stanford University). The NE-LCLC 

cell line H1155 was a generous gift from Dr. J. Minna’s laboratory (UT 

Southwestern). Human pancreatic adenocarcinoma cell line PANC1, 

human neuroblastoma cell line HTB1, and LCLC NCI-1915 were 

obtained from ATCC and cultured in the same conditions described 

above. The Merkel cell carcinoma cell line was a generous gift from 

Dr. P. Nghiem’s laboratory (University of Washington). The neuroen-

docrine mouse pancreatic cancer cells (MIN-6 and β-TC, both insuli-

nomas) were a generous gift from Dr. S. Kim’s laboratory (Stanford 

University) and were cultured in Dulbecco’s Modifi ed Eagle Medium  

containing high glucose (Thermo Scientifi c) and 15% serum. All mouse 

SCLC cell lines were generated in the Sage Laboratory and were authen-

ticated by genotyping for the mutant alleles and the expression of neu-

roendocrine markers. All human cell lines were either repurchased from 

ATCC or given to us by other laboratories, except for NJH29, which was 

generated in the Sage Laboratory; no further authentication was carried 

out on these cell lines.   

  MTT Assays and Calcium Measurement  
 For MTT assays (Roche), fl oating cells were seeded at 8 × 10 4  

(2% serum) or 1 × 10 5  (0.5% serum) per well in 96-well plates at day 

0, and drugs were added on day 1. MTT reagents were added on day 

2 or 3 depending on the experiments. The percentage survival was 

determined as the ratio of treated cells versus vehicle control. For all 

the rescue experiments, cells were pretreated with the various drugs or 

exogenous ligands for 30 minutes before the addition of imipramine 

or promethazine. Calcium measurements using the indicator Fluo-

3AM were carried out per the manufacturer’s instructions (Invitro-

gen). Briefl y, trypsinized cells treated with the drugs in 2% serum at 

different time points were stained with 2.5 μmol/L Fluo-3AM for 

30 minutes in RPMI media at 37°C. Cells were then washed in indicator-

free RPMI media and then resuspended in PBS directly before being run 

through an Aria Analyzer fl uorescence-activated cell sorting machine.   

  Immunoblot Analysis and Immunostaining  
 For immunoblotting, SCLC cells were homogenized using lysis 

buffer containing 1% NP-40, 50 mmol/L HEPES–KOH pH 7.8, 150 mmol/L 

NaCl, 10 mmol/L EDTA, and a cocktail of protease inhibitors. The 

antibodies used were phospho–stress-activated protein kinase (SAPK)/

JNK Thr183 and Tyr185 (p-JNK), JNK, phospho-c-Jun Ser63 (p-c-

Jun), c-Jun, phospho-CREB Ser133 (p-CREB antibody also recognizes 

p-ATF1), CREB, pan phospho-PKC βII Ser660 (p-PKC), PKC, and 

cleaved caspase-3 (all purchased from Cell Signaling technology), 

Karyopherin β1 (Santa  Cruz Biotechnology), and α-tubulin (Sigma). 

We used 5-μm paraffi n sections for H&E staining and immunostain-

ing. Paraffi n sections were dewaxed and rehydrated in the Trilogy 

reagent (Cell Marque). The primary antibodies used were phospho-

histone 3 Ser10 (p-H3; Millipore), cleaved caspase-3 (CC3; Cell Signal-

ing Technology), insulin (DAKO), and synaptophysin (SYN; Neuro-

mics). Alexa Fluor secondary antibodies (Invitrogen) were used for 

antibody detection. Fluorescent images were captured on the Leica 

fl uorescent microscope. For quantifi cation of the number of CC3- and 

p-H3–positive cells, tumors of similar size and area ranging between 

1,000 and 30,000 pixel units were included. Very small and very large 

tumors of areas measuring below or above this range were excluded.   

  Image Analysis and Statistics  
 Analysis of tumor areas and fl uorescent images was conducted 

using ImageJ software by measuring pixel units. Mice were scored as 

having signifi cant liver metastases if they had more than three metas-

tases with at least 50 cells each. Statistical signifi cance was assayed 

by a Student  t  test with the Prism GraphPad software (two-tailed 

unpaired and paired  t  test depending on the experiment). *,  P  < 0.05; 

**,  P  < 0.01; ***,  P  < 0.005; ns, not signifi cant. Data are represented 

as the mean ± SEM. For the survival curve analysis and comparison, 

we used the Mantel–Cox test.    
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