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and (iv) follow individually optimized therapies in patients by 

analysis of the clonal evolution of leukemic cells and molecular 

profi ling to understand mechanisms of drug resistance.   

 RESULTS  
 ISM Strategy for Personalized AML Therapy 

 To uncover the mechanisms of drug response and resistance 

as well as to monitor therapy response at the level of individual 

AML subclones, we combined DSRT and deep molecular profi l-

ing data. DSRT was implemented to AML blast cells  ex vivo  using 

a comprehensive set of 187 drugs, consisting of conventional 

chemotherapeutics and a broad range of targeted oncology 

compounds ( Table 1  and Supplementary Table S1). Each drug 

was tested over a 10,000-fold concentration range, allowing for 

the establishment of accurate dose–response curves for each 

drug in each patient and control sample with identifi cation of 

half-maximal effective concentrations and maximal responses 

(Supplementary Table S2). Although these responses refl ect the 

drug–sample interaction, the detailed interpretation of curve 

parameters is diffi cult. To overcome this issue, we found that the 

most informative way to assess quantitative drug sensitivities 

was to convert the information to a Drug Sensitivity Score (DSS), 

a metric used to determine the area under the dose–response 

curves. Importantly, we developed a new scoring system for 

assessing leukemia-selective effects by comparing the DSS in the 

AML cells with those of healthy donors (selective DSS: sDSS). 

Analysis of the drug-response data revealed that DSRT is highly 

reproducible ( r  = 0.98; Supplementary Fig. S1) and that all con-

trol samples exhibited similar response profi les (Supplementary 

Fig. S1). The analysis of DSRT results was completed in 4 days, 

rapid enough for clinical implementation. Indeed, we carried 

out a pilot test for the implementation of optimized therapies 

for 8 patients with chemorefractory AML. Patient treatment 

outcome was assessed by clinical criteria, but also by genomic 

profi ling to understand the clonal architecture underlying drug 

response and emerging resistance. Data on recurrent, paired 

samples identifi ed drugs that showed effi cacy after the develop-

ment of drug resistance and highlighted drugs that could be 

applied in combination. This approach provided the framework 

for a real-time continuous cycle of learning and optimization of 

therapies, one patient at a time, thereby creating an individual-

ized systems medicine process for improving cancer care.    

 DSRT Identifi ed Signal Transduction Inhibitors as 
Putative AML-Selective Drugs 

  Ex vivo  DSRT was performed on 28 samples obtained from 

18 patients with AML (Supplementary Table S3). Eighteen sam-

ples were collected at relapse and 10 at diagnosis, mainly from 

patients with adverse or intermediate cytogenetic risk (according 

to European LeukemiaNet; ref.  9 ). Out of the 187 drugs tested, 

sDSS indicated the most selective  ex vivo  effective drugs for each 

individual patient, with a focus on leukemia-specifi c effi cacies by 

comparing responses with normal bone marrow mononuclear 

cells. The results were expressed as a patient-specifi c water-

fall plot ( Fig.  2A ). Several targeted drugs exhibited a selective 

response in a subset of the AML samples, with only a minimal 

response in the control samples ( Fig. 2B and C  and Supplemen-

tary Fig. S2), suggesting that these AML samples were addicted 

to the signaling pathways inhibited by the drugs. In contrast, 

the average sensitivity to conventional chemotherapeutics did 

not signifi cantly differ between the patient samples and controls 

( Fig.  2B and D ). This refl ects the known limited therapeutic 

window for these drugs and the diffi culty in predicting their 

 Figure 1.      Functional  ISM platform for improved AML therapy. The platform involves (i) comprehensive direct DSRT of 187 approved and investigational 
oncology compounds in  ex vivo  primary cells from serial AML samples; (ii) clinical implementation of testing results in individual patients with relapsed 
and refractory disease; (iii) deep molecular and genomic profi ling of the patients with AML from consecutive samples before and after relapse and drug 
resistance for monitoring disease progression and clonal evolution; and (iv) integrating drug sensitivity, next-generation sequencing, and clinical follow-up 
data to understand the biology of disease, drug sensitivity, and resistance that can lead to rapid introduction of novel therapies to the clinic. DSS, Drug 
Sensitivity Score.   

DSRT

Molecular profiling

Effective drugs 

Resistant drugs 

–9 –8 –7 –6 –5

0

20

40

60

80

100

Log conc (mol/L) 

%
 S

u
rv

iv
a
l

S
e

le
c
ti
ve

 D
S

S

Genome Transcriptome Signalome

Individualized drug treatment selection

Result

Understanding 

biology of disease

Understanding

drug sensitivity

and resistance

Rapid introduction

of therapies

Diagnosis

Relapse 1

Relapse 2

on April 10, 2021. © 2013 American Association for Cancer Research. cancerdiscovery.aacrjournals.org Downloaded from 

Published OnlineFirst September 20, 2013; DOI: 10.1158/2159-8290.CD-13-0350 



 DECEMBER  2013�CANCER DISCOVERY | 1419 

ISM Approach to Therapy Selection RESEARCH ARTICLE

clinical effi cacy based on  ex vivo  testing. Interestingly, cytarabine, 

an established and effective AML drug, showed higher selective 

effi cacy against AML cells than other cytotoxic agents ( Fig. 2B  

and Supplementary Fig. S2), suggesting the feasibility of com-

bining cytarabine with promising molecularly targeted drugs in 

the future clinical testing of relapsed or primary AML.  

 Signifi cant anticancer-selective effects were observed for the 

tyrosine kinase inhibitors (TKI) dasatinib in 10 of the AML 

patient samples (36%) and sunitinib in 10 (36%), MAP–ERK 

kinase (MEK) inhibitors such as trametinib in 10 (36%), rapalogs 

such as temsirolimus in 9 (32%), foretinib in 9 (32%), ponatinib in 

7 (25%), ruxolitinib in 7 (25%), dactolisib in 7 (25%), MK-2206 in 

6 (21%), sorafenib in 6 (21%), and quizartinib in 5 (18%;  Fig. 2E ). 

Thus, we identifi ed several highly ( ex vivo ) AML-selective drugs 

that are not currently approved for AML but that are approved 

for other cancer indications, and would therefore be available 

in the clinic. Furthermore, a number of effective investiga-

tional drug classes were seen, such as AKT inhibitors and ATP-

competitive mTOR inhibitors, which could be prioritized for 

future clinical studies of chemorefractory AML.   

 Table 1.    Drug  classes and drugs represented in the DSRT screening platform  

Classes of drugs Drugs

Alkylating agents Altretamine, azacitidine, busulfan, carboplatin, carmustine, chlorambucil, cyclophosphamide, dacarbazine, 

ifosfamide, lomustine, pipobroman, procarbazine, streptozocin, temozolomide, thioTEPA, uracil mustard

Antimetabolites Allopurinol, capecitabine, cladribine, clofarabine, cytarabine, decitabine, fl oxuridine, fl udarabine, 

fl uorouracil, gemcitabine, mercaptopurine, methotrexate, nelarabine, pentostatin, thioguanine

Antimitotics ABT-751, docetaxel, indibulin, ixabepilone, paclitaxel, patupilone, S-trityl-L-cysteine, vinblastine, 

vincristine, vinorelbine

Antitumor antibiotics Bleomycin, dactinomycin, mitomycin C, plicamycin

BCL-2 inhibitors Navitoclax, obatoclax

HDAC inhibitors Belinostat, CUDC-101, entinostat, panobinostat, tacedinaline, vorinostat

Hormone inhibitors Abiraterone, aminoglutethimide, anastrozole, exemestane, fi nasteride, fl utamide, fulvestrant, goserelin, 

letrozole, megestrol acetate, nilutamide, raloxifene, tamoxifen

HSP90 inhibitors Alvespimycin, BIIB021, NVP-AUY922, tanespimycin

Immunomodulators Celecoxib, dexamethasone, fi ngolimod, imiquimod, lenalidomide, levamisole, methylprednisolone, 

plerixafor, prednisolone, prednisone, tacrolimus, thalidomide

Kinase inhibitors, AGC Alisertib, AT9283, AZD1152-HQPA, BI2536, bryostatin 1, danusertib, enzastaurin, fasudil, midostaurin, 

MK-2206, ruboxistaurin, sotrastaurin, UCN-01

Kinase inhibitors, CAMK AZD7762, PF-00477736

Kinase inhibitors, CK1 MK-1775

Kinase inhibitors, CMGC Alvocidib, AZ 3146, doramapimod, palbociclib, seliciclib, SNS-032

Kinase inhibitors, PIKL AZD8055, dactolisib, idelalisib, OSI-027, PF-04691502, pictilisib, XL147, XL765

Kinase inhibitors, STE Pimasertib, refametinib, selumetinib, trametinib

Kinase inhibitors, TK Afatinib, axitinib, BMS-754807, canertinib, cediranib, crizotinib, dasatinib, dovitinib, EMD1214063, 

erlotinib, foretinib, gandotinib, gefi tinib, imatinib, lapatinib, lestaurtinib, linsitinib, masitinib, MGCD-265, 

motesanib, nilotinib, pazopanib, ponatinib, quizartinib, regorafenib, ruxolitinib, saracatinib, sorafenib, 

sunitinib, tandutinib, tivozanib, tofacitinib, vandetanib, vatalanib

Kinase inhibitors, TKL Vemurafenib

PARP inhibitors Iniparib, olaparib, rucaparib, veliparib

Proteasome inhibitors Bortezomib, carfi lzomib

Rapalogs Everolimus, sirolimus, temsirolimus

Smoothened (Hh) inhibitors Erismodegib, vismodegib

Topoisomerase I/II inhibitors Amonafi de, camptothecin, daunorubicin, doxorubicin, etoposide, idarubicin, irinotecan, mitoxantrone, 

teniposide, topotecan, valrubicin

Miscellaneous antineoplastics Bexarotene, hydroxyurea, mitotane, tretinoin

Other 2-Methoxyestradiol, anagrelide, bimatoprost, pilocarpine, Prima-1 Met, serdemetan, tarenfl urbil, 

tipifarnib, XAV-939, YM155

Abbreviations  : AGC: PKA, PKG, and PKC kinase group; CAMK: calcium/calmodulin–dependent protein kinase group; CK1: casein kinase group; 
CMGC: CDK, MAPK, GSK3, and CLK kinase group; PIKL: phosphoinositide 3-kinase (PI3K)-like (PI3K inhibitors and inhibitors of related atypical 
kinases: mTOR, DNA-PK, ATM, ATR); STE: sterile kinase group; TK: tyrosine kinase group; TKL: tyrosine kinase-like group.  
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 Taxonomy of AML Based on the Comprehensive 
Drug-Response Profi les 

 Overall drug-response patterns of the patient samples 

were visualized with unsupervised hierarchical clustering. 

Although each individual sample showed a unique leukemia-

selective drug-response profi le, the overall drug-response 

profi les segregated the AML patient samples into fi ve robust 

functional subgroups ( Fig.  3 ; Supplementary Figs. S3 and 

S4). Thus, despite the underlying genomic and phenotypic 

variability in AML, similar drug sensitivity patterns were 

observed among the AML patient samples for certain drug 

classes. Compared with controls, all fi ve groups showed 

increased sensitivity to navitoclax, a BCL-2/BCL-XL inhibitor, 

HSP90 inhibitors, and histone deacetylase (HDAC) inhibi-

tors. Group I exhibited a strong selective response to navito-

clax and lack of sensitivity to the remainder of the tested 

compounds. Group II AMLs were largely nonresponsive to 

receptor TKIs, but instead showed a potential infl ammatory 

signal-driven phenotype as seen by selective responses to a 

group of immunosuppressive drugs (e.g., dexamethasone or 

prednisolone), Janus-activated kinase (JAK) family kinase 

inhibitors, and MEK inhibitors. Group III, IV, and V AMLs 

were selectively sensitive to a broad range of TKIs, indicating 

that they were driven or addicted to receptor tyrosine kinase 

signaling pathways. Group III AMLs displayed a similar 

sensitivity pattern to HSP90, HDAC, and phosphoinositide 

3-kinase (PI3K)/mTOR inhibitors as group IV and V, albeit 

with lower selectivity. Group IV AMLs were especially sensi-

tive to MEK and PI3K/mTOR inhibitors, whereas group V 

AMLs showed selective responses to receptor TKIs target-

ing ABL, VEGF receptor (VEGFR), platelet derived growth 

factor receptor (PDGFR), FLT3, KIT, PI3K/mTOR as well 

as topoisomerase II inhibitors ( Fig.  3 ). Overall, 19 of 

28 samples were sensitive to tyrosine kinase inhibition, 

correlating well with the fi ndings in the recent study by 

Tyner and colleagues ( 11 ).    

 Figure 2.      Targeted compounds exhibit cancer-selective  ex vivo  drug 
responses in AML. A, waterfall plot that highlights the most potent 
cancer-selective drugs for each individual patient as well as drugs that 
are most likely to exhibit resistance/no sensitivity. B, comparison of 
cancer selectivity of  ex vivo  drug responses (DSS) of four clinically 
approved drugs, conventional chemotherapeutic agents (left), and four 
signal transduction inhibitors (right). The DSSs  are compared between 
healthy bone marrow samples (controls;  n  = 7) and AML patient samples 
( n  = 28) with the range and median DSS value depicted. C and D, the 
distribution of the sensitivity to trametinib (MEK inhibitor) and 
idarubicin (topoisomerase II inhibitor) in 28 AML patient and 7 control 
samples expressed as  Z -score (SD from the average control DSS drug 
response). E, percentages of AML patient samples selectively respond-
ing  ex vivo  to selected signal transduction inhibitors as assessed by 
sDSS, represented as a bar graph.   

on April 10, 2021. © 2013 American Association for Cancer Research. cancerdiscovery.aacrjournals.org Downloaded from 

Published OnlineFirst September 20, 2013; DOI: 10.1158/2159-8290.CD-13-0350 

http://cancerdiscovery.aacrjournals.org/


 DECEMBER  2013�CANCER DISCOVERY | 1421 

ISM Approach to Therapy Selection RESEARCH ARTICLE

 Taxonomy of Cancer Drugs Based on the 
Comprehensive Drug-Response Profi les in AML 

 The hierarchical clustering also stratifi ed the drugs based 

on the variability of responses among the patients with 

AML (Supplementary Fig. S3). In this unsupervised analysis, 

drugs with similar modes of action clustered together, such 

as the PI3K/mTOR inhibitors, MEK inhibitors, HSP90 and 

HDAC inhibitors, VEGFR-type TKIs, PDGFR inhibitors, and 

ABL-like kinase inhibitors, antimitotics, and topoisomerase 

II inhibitors. Thus, the unsupervised clustering of drugs 

into subgroups defi ned by their intended targets strongly 

supports the consistency and reproducibility of the DSRT 

analysis as well as its ability to acquire biologically and medi-

cally relevant information. However, there were also notable 

deviations from the expected patterns. Importantly, the FLT3 

inhibitor quizartinib clustered with the topoisomerase II 

inhibitors but not with other TKIs. Furthermore, the recently 

approved BCR–ABL1 and FLT3 inhibitor ponatinib clustered 

with cytarabine, HSP90, and HDAC inhibitors and not with 

other TKIs. These unexpected links may represent underlying 

key molecular mechanisms of these drugs in the AML con-

text, including unexpected off-target effects. Furthermore, 

these drug-clustering patterns from human AML patient 

specimens  ex vivo  may in the future be critically important in 

designing novel therapeutic combination strategies for clini-

cal trials in AML. Therefore, this provides new combinatorial 

possibilities that could not have easily been discovered with-

out the unbiased DSRT data.   

 Genomic and Molecular Findings Underlying the 
Drug-Response Profi les 

 To test whether the molecular profi les of the patient sam-

ples correlated with the overall drug responses, we compared 

the distribution of signifi cant AML mutations and recurrent 

gene fusions ( 4 ) with the DSRT-driven clustering ( Fig.  3 ). 

 FLT3 -mutated samples appeared in several different functional 

groups, but all patient samples in group V, the most tyrosine 

kinase–dependent group, carried these mutations. Hence, the 

group V drug-response pattern is a strong indicator of driver 

 FLT3  mutations, and, as expected, an  FLT3  mutation is an 

indicator that the cells are likely to respond to TKI treatment. 

Several FLT3 inhibitors, such as quizartinib, sunitinib, and 

foretinib, were among the most selective drugs for group V. 

Importantly, TKIs without FLT3 inhibitory activity, such as 

dasatinib, were highly effective in this group ( P  = 0.03), suggest-

ing that FLT3-driven AMLs are also dependent on other tyrosine 

kinase signals. Furthermore, mutations in  RAS  genes correlated 

signifi cantly with  ex vivo  sensitivity to MEK inhibitors ( P  = 

0.001). Samples from two patients with  MLL  fusions clustered 

together in group IV, possibly linking  MLL  fusions with sensitiv-

ity to MEK inhibitor sensitivity. In addition, an enrichment of 

 TP53  mutations in groups I and II was observed (3 of 4 cases), 

and all patient samples in taxonomic group II were associated 

 Figure 3.      Functional taxonomy of AML based 
on comprehensive drug response and mutation 
profi les. A dendrogram of the DSRT responses 
shows clustering of the AML patient samples 
in fi ve functional groups (group I, II, III, IV, and 
V). Samples were clustered with the complete 
linkage method using Euclidean distance meas-
ures. This approach provides a data-driven way 
to classify samples based on drug effi cacies 
and drugs based on their differential bioac-
tivity across patient samples. Sensitivity or 
nonsensitivity to either navitoclax, ruxolitinib, 
MEK inhibitors, dasatinib, quizartinib, sunitinib, 
PI3K/mTOR inhibitors, and topoisomerase II 
inhibitors drives the sample groupings. The 
molecular profi les (signifi cant AML mutations 
and recurrent gene fusions), disease stage, and 
adverse karyotype status of the patient sam-
ples are also shown to illustrate the correlation 
between functional drug sensitivity and somatic 
mutation and cytogenetics data. D, diagnosis; 
D*, secondary AML diagnosis; R, relapsed and/or 
refractory.   
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with adverse karyotypes. Beyond these examples, the majority 

of the clustering of drug sensitivities could not be attributed to 

obvious alterations in the AML tumor genomes.   

 DSRT Was Predictive of Clinical Responses and 
Recapitulates Acquisition of Resistance  In Vivo  

 The results of DSRT were considered to be therapeutically 

actionable if (i) a distinct leukemia-selective response pattern 

was seen, (ii) drugs showing sensitivity were available for com-

passionate or off-label use without signifi cantly delaying the 

treatment, and (iii) no standard therapy was available. Accord-

ing to European LeukemiaNet ( 9 ) response criteria, 3 of 8 

evaluable patients had a response to DSRT-guided therapy 

[Supplementary Table S4; patient 600 (dasatinib–sunitinib–

temsirolimus): complete remission with incomplete platelet 

recovery (CRi); patients 718 (sorafenib–clofarabine) and 800 

(dasatinib–clofarabine–vinblastine): morphologic leukemia-

free state]. Four other patients had responses that did not 

meet the European LeukemiaNet criteria. Patient 560 showed 

a rapid clearance of blasts in peripheral blood after 5 days 

of treatment (dasatinib–sunitinib), after which therapy was 

discontinued because of gastrointestinal toxicity. Patient  252 

(AML with three prior relapses) had an 8-week progression-free 

period during dasatinib monotherapy (bone marrow blasts 

65%–40%–70%). Patient 784 achieved a transient response with 

dasatinib–sunitinib–temsirolimus therapy: bone marrow blasts 

decreased from 70% to 35%, but the treatment response was lost 

due to selection of a resistant clone. Patient 1145 had hemato-

logic improvement during ruxolitinib–dexamethasone therapy. 

Even patients with partial or transitional clinical responses had 

a profound effect on the clonal composition of the tumors, 

including selection of potential drug resistance–associated 

mutations. Therefore, detailed genomic analysis of such cases is 

important to measure the impact of therapy and to understand 

the potential mechanisms of response and resistance. 

 Here, we present in detail two clinical examples on the 

implementation of DSRT results in patients with AML, 

including the consecutive sampling and serial monitoring of 

drug-sensitivity profi les and clonal evolution  in vivo . In the 

fi rst case, the bone marrow cells from a relapsed and refractory 

54-year-old patient (sample 600_2) with a normal-karyotype 

AML FAB M5 were subjected to DSRT and deep molecular 

profi ling. The patient had previously failed three consecutive 

induction therapies ( Fig. 4A ). The DSRT results highlighted 

dasatinib, sunitinib, and temsirolimus among the top fi ve 

most selective approved drugs. In an off-label compassion-

ate use setting, the patient received a combination of these 

targeted drugs, resulting in rapid reduction of the bone 

marrow blast count and marked improvement in the poor 

performance status. Concomitantly, the blood counts rapidly 

normalized resulting in CRi. However, 30 days after achieving 

the CRi response, resistance emerged. A new DSRT analysis 

from the relapsed sample (600_3) showed that the drugs used 

in patient treatment exhibited remarkably reduced anticancer 

activity as compared with the pretreatment sample ( Fig. 4B ), 

demonstrating a match between  ex vivo  and  in vivo  responses. 

In this patient, the  ex vivo  responses to many other drugs were 

also strongly reduced in the relapsed sample ( Fig. 4C ).  

 A fusion transcript joining  NUP98  exon 12 and  NSD1  exon 

6 resulting from a cryptic chromosome translocation t(5;11)

(q35;p15.5) was detected by RNA sequencing in sample 600_2. 

This oncogenic fusion ( 12 ) is relatively common in cytogeneti-

cally normal pediatric AML ( 13, 14 ), but relatively rare in adult 

AML ( 15 ). The  NUP98 – NSD1  fusion was also detected in the 

diagnostic sample (600_0) and all follow-up samples, suggest-

ing that this fusion was the initiating event in the development 

of the patient’s disease. Exome sequencing revealed a diverse 

subclonal architecture highlighted by two  FLT3 -ITD (Supple-

mentary Fig. S5A and S5B) and four different  WT1  mutations 

(Supplementary Fig. S6A and S6B; Supplementary Table S5; 

and Supplementary Methods). After induction chemotherapy, 

the predominant  FLT3 -ITD harboring subclone was no longer 

detectable. Instead, subclones containing  WT1  mutations and 

a second  FLT3 -ITD emerged ( Fig. 4D and E ). The sensitivity 

to quizartinib, sunitinib, and other FLT3 inhibitors indicated 

FLT3 as a disease driver in the 600_2 sample. In the DSRT-

relapsed 600_3 sample, the dasatinib, sunitinib, and tem-

sirolimus therapy had further selected a specifi c subclone still 

containing the second  FLT3 -ITD even though the response 

to FLT3 inhibitors and other TKIs was lost. The broad loss 

in drug response in the 600_3 sample was also accompanied 

with decreased phosphorylation of AKT (S473), CHK2 (T68), 

CREB (S133), ERK1/2 (T202/Y204, T185/Y187), FAK (Y397), 

p38α (T180/Y182), and STAT1 (Y701; data not shown).   

 DSRT and Molecular Profi ling Defi ned Key Oncogenic 
Signals and Mechanisms of Drug Resistance 

 A second clinical case was a 37-year-old patient (784_1) who 

was diagnosed with a recurrent t(11;19)(q23;p13.1) transloca-

tion and corresponding  MLL – ELL  fusion gene. The patient had 

relapsed from three previous rounds of conventional therapy. 

Initial DSRT results (784_1) showed selective responses to 

MEK inhibitors, rapalogs, and several TKIs, including dasat-

inib ( Fig.  5A ). This patient was also treated with dasatinib, 

sunitinib, and temsirolimus, which led to a rapid decrease in 

both peripheral leukocytosis and bone marrow blast counts, 

but the effect was short-lived. The  ex vivo  drug sensitivity of 

the resistant sample (784_2) revealed that the cells had lost 

their response to dasatinib and rapalogs, but preserved their 

response to ATP-competitive mTOR inhibitors (such as dac-

tolisib and AZD8055). Interestingly, the resistant sample gained 

sensitivity to a TKI that was previously ineffective in the DSRT, 

BMS-754807 [insulin-like growth factor-I receptor (IGF-IR)/

Trk inhibitor], as well as crizotinib (TKI) and tipifarnib (farnesyl-

transferase inhibitor), several topoisomerase II inhibitors, and 

immunomodulatory and differentiating compounds ( Fig. 5B ).  

 Using the DSRT data on kinase inhibitors with published 

comprehensive biochemical profi ling data ( 16 ), we identifi ed 

putative kinases to which the cells were addicted. Impor-

tantly, a comparison between the fi rst and the relapsed sam-

ple identifi ed a major switch in kinase addiction with a loss 

of addiction to Src family kinases, PI3K and p38 mitogen-

activated protein kinases (MAPK), and a gain of addiction to 

ALK and Trk family receptor tyrosine kinases ( Fig. 5C ). 

 The resistance to the dasatinib, sunitinib, and temsirolimus 

treatment in this patient was not associated with any novel 

detected mutations or other genetic alterations, but coincided 

with more than 1,000-fold enrichment of two fusion tran-

scripts,  ETV6–NTRK3  and  STRN-ALK  (Supplementary Fig. S7), 

suggesting that resistance emerged from the selection of 
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 Figure 4.      Clinical implementation of DSRT predictions and clonal evolution analysis in a heavily refractory AML patient. A, clinical follow-up of patient 
600 from diagnosis through relapse, depicting percentage of bone marrow blasts and number of neutrophils. B, initial DSRT results from relapsed and 
refractory patient 600 showed that the patient cells  ex vivo  exhibited sensitivity to several kinase inhibitors (including dasatinib and sunitinib) and rapa-
logs, and as a result, the patient was treated with a combination of dasatinib, sunitinib, and temsirolimus. The patient achieved complete remission under 
this drug regimen, but relapsed 5 weeks later. Bar graphs show the before and after relapse sDSS for sensitivity to dasatinib, sunitinib, and temsirolimus. 
C, comparison of DSRT responses of the initial (600_2) and relapsed sample (600_3), revealing the loss of sensitivity to the majority of tested com-
pounds. Drugs for which the DSS decreased greater than 10 from 600_2 to 600_3 are marked in blue, other drugs with an sDSS greater than 10 in 600_2 
are marked in pale blue, and drugs with an sDSS greater than 10 in both 600_2 and 600_3 are marked in green. D, clonal progression of the disease in the 
patient from diagnosis to relapse; further information is included in the Supplementary Data and Supplementary Table S5. E, summary heatmap illustrat-
ing the key putative oncogenic genetic alterations in the clones depicted in D.   

A

C D

0 50 100 150 180 200 220
0

20

40

60

80

100

0.0

2.5

5.0

Chemotherapy Das–Sun–Tem

D
600_0 600_2 600_3

%

1
0
E

9

Chemotherapy Das–Sun–Tem Das–Tem

Bone marrow blasts (%)

Neutrophils (x10E9)

Temsirolimus

s
D

S
S

NUP98–NSD1 

600_0 600_1 600_3600_2

74 %

6%

20%

33%

37%

15%

15%

90%

Clone1
FLT3-ITD #1 

 
Clone 3
WT1 #2

FLT3-ITD #2
WT1 #1
Clone 2 

WT1 #4
Clone 5

WT1 #3
Clone 4
 

<10%

<10%

B Dasatinib

s
D

S
S

600_2 600_3
0

5

10

15
Sunitinib

s
D

S
S

600_2 600_3
0

5

10

15

20

600_2 600_3
–5

0

5

10

15

0 5 10 15 20
0

5

10

15

20

Plicamycin

Cytarabine

Mitoxantrone

Navitoclax

Alvespimycin

BIIB021

Ponatinib

PF-04691502

Tivozanib

AZD7762

NVP-AUY922

Lestaurtinib

Dasatinib
Axitinib

Temsirolimus

Entinostat

Sorafenib

Sirolimus

Etoposide Sunitinib

Quizartinib

600_2 sDSS

6
0
0
_
3
 s

D
S

S

Tanespimycin

E

N
U

P9
8–

N
SD

1 
fu

ss
io

n

IS
T1

(M
P2

43
-)

 F
LT

3-
IT

D
 #

1
FL

T3
-IT

D
 #

2
W

T1
(-3

79
?)

 (#
1)

H
2A

FZ
(V

11
0G

)

SD
R

42
E1

(R
30

3Q
)

W
T1

(-3
76

R
?)

 (#
2)

W
T1

(-3
70

?)
 (#

3)

W
T1

(-3
80

?)
 (#

4)

Clone 1

Clone 2

Clone 3

Clone 4

Clone 5

preexisting small subclones. The  ETV6–NTRK3  encodes for 

the oncogenic fusion protein TEL–TrkC, whereas the  STRN-

ALK  fusion was out of frame and therefore did not result 

in a functional fusion protein ( Fig.  6A  and Supplementary 

Fig. S8). These genetic events were accompanied by increases 

in p70S6 kinase (T389) and CREB (S133) phosphorylation 

( Fig.  6B ), suggesting that mTORC1 was hyperactivated, a 

known mechanism of resistance toward rapalogs ( 17 ). The 

fusion gene  MLL – ELL  was detected from the diagnostic and 

subsequent samples, suggesting that this was an initiating 

driver event in this leukemia. Similar to patient 600, patient 

784 initially also had  FLT3 -ITD mutations (Supplementary 

Fig.  S9A and S9B) that were lost after induction chemo-

therapy, and a mutation to  WT1  augmented by LOH that 

persisted throughout the course of the disease ( Fig.  6C and 

D  and Supplementary Table S6). The gained sensitivity to 

the dual IGF-IR/TrkC inhibitor BMS-754807 fi ts with the 

model of the TEL–TrkC fusion protein as a new driver, 

because the oncogenic potential of this fusion has been shown 

to be dependent on the activity of IGF-IR ( 18, 19 ) and lead 

to hyperactivation of mTORC1 ( 20, 21 ). Thus, we predict 

that in this patient, the mechanism of resistance involved 
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 Figure 5.      Functional DSRT and kinase inhibitor sensitivity defi ned key oncologic signals and mechanisms of resistance. A, initial DSRT results from 
refractory patient 784, highlighting selective sensitivity to MEK inhibitors, rapalogs, and several TKIs. On the basis of these results, the patient was 
treated with dasatinib, sunitinib, and temsirolimus (marked with asterisks). B, correlation of the DSRT results of the initial (784_1) and resistant (784_2) 
sample, illustrating that the relapsed cells had lost sensitivity to dasatinib and rapalogs but retained sensitivity to ATP-competitive mTOR inhibitors and 
gained sensitivity to BMS-754807, crizotinib, danusertib, and tipifarnib. Drugs for which the DSS decreased greater than 10 from 784_1 to 784_2 are 
marked in blue, other drugs with an sDSS greater than 10 in 784_1 are marked in pale blue, drugs for which the DSS increased greater than 10 from 784_1 
to 784_2 are marked in red, other drugs with an sDSS greater than 10 in 784_2 are marked in pink, and drugs with an sDSS greater than 10 in both 600_2 
and 600_3 are marked in green. C, kinase inhibitor sDSS responses matched with target profi les described by Davis and colleagues ( 16 ) yield putative 
kinase addiction subnetworks in the two patient samples.   
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TEL–TrkC-mediated activation of IGF-IR signaling, which pro-

moted hyperactivation of mTORC1. Supporting this hypothe-

sis, we observed synergistic activities between the BMS-754807 

IGF-IR/TrkC inhibitor and dactolisib, an ATP-competitive 

mTOR inhibitor ( Fig.  6E ). The combination of BMS-754807 

and the MEK inhibitor trametinib, on the other hand, did not 

result in synergism, indicating that the TEL–TrkC/IGF-IR/

mTORC1 dependency represents a separate signal than the 

one leading to addiction to MEK signaling ( Fig.  6F ). Taken 

together, these results indicate how ISM strategy helps to iden-

tify not only the mechanisms of resistance, but also potential 

ways to counteract it with combinatorial therapies.     

 DISCUSSION 

 We present here an ISM strategy based on the systematic func-

tional testing of patient-derived primary cancer cell sensitivity to 

targeted anticancer agents coupled with genomic and molecu-

lar profi ling. Importantly, the intent is to guide treatment 

decisions for individual cancer patients coupled with monitor-

ing of subsequent responses in patients to measure and under-

stand the effi cacy and mechanism of action of the drugs. The 

ISM strategy allows for an iterative adjustment of therapies for 

patients with cancer, one patient at a time, with repeated sam-

pling playing a major role in understanding and learning from 
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each success and failure. Furthermore, ISM facilitates learning 

by discovering molecular or functional patterns from past 

patient cases to help therapeutic assessment of new patients. 

 Application of the DSRT technology to 28 AML patient 

samples identifi ed effective molecularly targeted compounds 

inducing selective toxic or inhibitory responses in AML cells 

over normal bone marrow mononuclear cells. Our data suggest 

the intriguing possibility that anticancer agents already in clini-

cal use for other diseases, such as dasatinib (current approved 

indications are chronic myeloid leukemia and Ph+ acute lym-

phoblastic leukemia), sunitinib (renal cell cancer and gastroin-

testinal stromal tumors), and temsirolimus (renal cell cancer), 

could be repositioned for subsets of AML patients. Although 

we did not achieve long-term cures in patients with AML receiv-

ing DSRT-guided therapies, the clinical responses seen are 

encouraging, given the fact that most of the patients with AML 

studied here had complex chemorefractory, end-stage disease. 

Obviously, the clinical results arise from a nonrandomized 

setting and need to be verifi ed. However, the clinical implemen-

tation of ISM in individual patients is a powerful way to create 

hypotheses to be tested in systematic clinical studies, both for 

existing and emerging drugs. Indeed, we also identifi ed several 

investigational oncology drug classes, such as ATP-competitive 

PI3K/AKT/mTOR pathway inhibitors, MEK inhibitors, and 

JAK inhibitors, which deserve attention as drugs to priori-

tize for future clinical trials in AML. Furthermore, the ISM 

approach could also help to identify effective drug combina-

tions based on associating drug sensitivities. 

 Unsupervised clustering of the patient samples identifi ed 

fi ve functional taxonomic groups in AML based on  ex vivo  

drug responses.  FLT3  mutations were highly enriched among 

the most TKI-sensitive functional group (group V), with FLT3 

inhibitors being the most selective class of drugs for this group. 

However, these samples were also selectively sensitive to other 

kinase inhibitors, such as dasatinib, that lack FLT3 activity, sug-

gesting that oncogenic FLT3 signaling may be dependent on the 

 Figure 6.      IGF-IR and mTOR inhibition has a synergistic effect in  ETV6 – NTRK3 -driven AMLs. A, validation sequencing and resulting predicted protein 
structure of two fusions identifi ed in this patient with RNA sequencing. The  MLL – ELL  fusion was present throughout the disease, whereas the  ETV6–
NTRK3  (TEL–TrkC) fusion was detected in the dasatinib–temsirolimus resistant sample. B, phosphoproteomic profi ling of the initial and resistant 
samples displayed a signaling switch in the leukemic cells. C, clonal evolution of the AML from diagnosis to relapse. D, summary heatmap illustrating the 
key putative oncogenic genetic alterations in the clones depicted in C. E, combinatorial treatment of the patient cells with the IGF-IR/TrkC inhibitor BMS-
754807 and either dactolisib (ATP-competitive mTOR inhibitor) or trametinib (MEK inhibitor) revealed that there is a synergistic effect between mTOR 
and IGF-IR/TrkC inhibition. F, a model of kinase driver switch and drug resistance in this patient.   
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signaling of other tyrosine kinases whose inhibition may syner-

gize with the therapeutic effects of FLT3 inhibitors. Given that 

the clinical implementation of FLT3 inhibitors has proven very 

challenging, the identifi cation of druggable synergistic kinase 

signals or drugs could be extremely important. Furthermore, we 

observed a signifi cant association between activating mutations 

in  RAS  genes and sensitivity to MEK inhibitors, in line with pre-

vious results showing that trametinib exhibited favorable clini-

cal responses in patients with  RAS -mutated refractory AML ( 22 ). 

Finally, we identifi ed a tendency of clustering of  TP53  mutations 

in the two least-responsive functional groups (groups I and II) 

and mutations and fusions linking to epigenetic modulation in 

groups III and IV. However, most of the drug-response classifi ca-

tions and variabilities could not yet be attributed to the main 

mutations detected in the patient samples. Such drug responses 

may arise from nongenomic causes and complex combinatorial 

molecular pathways, and these fi ndings therefore highlight the 

value of DSRT in (i) functionally validating suggestions aris-

ing from the genomic profi les and (ii) discovering other drug 

dependencies that have yet to be deduced from genomic or 

transcriptomic data. The relationship between genomic changes 

and drug response may also be more complicated in the chem-

orefractory patient samples studied here. 

 Despite multiple efforts over several decades, the direct pre-

diction of cancer cell chemosensitivity in the clinical setting has 

remained an elusive goal. Compared with previously published 

approaches, the ISM approach presented here has distinct differ-

ences. First, our studies focused on targeted drugs, whereas most 

of the previous efforts of  ex vivo  drug testing have focused on 

conventional chemotherapeutics ( 23–27 ). The  ex vivo  responses 

to these agents are often nonselective and more diffi cult to inter-

pret and translate to clinical patient care. Second, we focused 

on leukemias, whereas many previous studies have focused on 

solid tumors ( 28–33 ), where representative samples are diffi cult 

to acquire and consecutive samples from recurrent disease are 

typically not available. Third, we measured selective anticancer 

effects as compared with normal bone marrow mononuclear 

cells, which makes it possible to identify cancer-selective drugs 

with potential for less systemic toxicity. Fourth, we performed a 

rapid analysis of the  in vivo  effects of the drugs from consecutive 

samples. Our novel endpoint for therapy effi cacy in patients was 

an impact on the clonal composition of the cancer sample. 

 The different types of responses in our clinically translated 

patient cases highlight the diffi culty in predicting mecha-

nisms of resistance and support the importance of repeated 

functional testing such as DSRT during disease progression 

to identify changes in drug sensitivities. In patient 600, the 

leukemic cells carried a  FLT3 -ITD mutation and showed 

addiction to this oncogene based on highly selective responses 

to FLT3 inhibitors, such as quizartinib and sunitinib. Inter-

estingly, the same  FLT3 -ITD variant remained in the resistant 

cells, but the response to quizartinib, sunitinib, and other 

FLT3 inhibitors was lost, and the cells acquired pan-resistance 

to almost all agents tested. In contrast, in patient 784, resist-

ance to dasatinib, sunitinib, and temsirolimus treatment was 

linked to enrichment of clonal populations carrying a tyro-

sine kinase fusion gene that mediated resistance. The  ETV6–

NTRK3  fusion and the resulting TEL–TrkC fusion protein is 

a known oncogenic driver in AML and other cancers ( 34–36 ) 

and is dependent on IGF-IR kinase activity ( 18–20 ,  37, 38 ). 

This hypothesis is supported by the acquisition of sensitivity, 

based on  ex vivo  testing, to the dual IGF-IR/TrkC inhibitor 

BMS-754807 exclusively in the relapsed sample. 

 In conclusion, we present an individual-centric, functional 

systems medicine strategy to systematically identify drugs to 

which individual patients with AML are sensitive and resistant, 

implement such strategies in the clinic, and learn from the inte-

grated genomic, molecular, and functional analysis of drug sen-

sitivity and resistance in paired samples. ISM strategy provides 

a powerful way to create hypotheses to be tested in formal clini-

cal trials, for existing drugs, emerging compounds, and their 

combinations. In the future, ISM may pave a path for routine 

individualized optimization of patient therapies in the clinic.   

 METHODS  
 Study Patients and Material 

 Twenty-eight bone marrow aspirates and peripheral blood samples 

(leukemic cells) and skin biopsies (noncancerous cells for germline 

genomic information) from 18 AML and high-risk [according  to the 

WHO classifi cation-based Prognostic Scoring System (WPSS); ref.  39 ] 

patients with myelodysplastic syndromes (MDS) and 7 samples from 

different healthy donors (controls) were obtained after informed con-

sent with approval (No. 239/13/03/00/2010, 303/13/03/01/2011). 

Patient characteristics are summarized in Supplementary Table S3. 

Mononuclear cells were isolated by Ficoll density gradient (Ficoll-

Paque PREMIUM; GE Healthcare), washed, counted, and suspended 

in Mononuclear Cell Medium (MCM; PromoCell) supplemented with 

0.5 μg/mL gentamicin and 2.5 μg/mL amphotericin B. One sample 

from patient 393, a secondary AML after MDS with 20% myeloblasts, 

was enriched for the CD34 +  cell population (sample 393_3, cor-

responding to the blast cell population) using paramagnetic beads 

according to the manufacturer’s instructions (Miltenyi Biotech).   

 Development of the Compound Collection 
 The oncology compound collection covers the active substances from 

the majority of U.S. Food and Drug Administration/European Medi-

cines Agency ( FDA/EMA)–approved anticancer drugs ( n  = 123), as well 

as emerging investigational and preclinical compounds ( n  = 64) covering 

a wide range of molecular targets (Supplementary Table S1). The com-

pounds were obtained from the National Cancer Institute Drug Testing 

Program (NCI DTP) and commercial chemical vendors: Active Biochem, 

Axon Medchem, Cayman Chemical Company, ChemieTek, Enzo Life 

Sciences, LC Laboratories, Santa Cruz Biotechnology, Selleck, Sequoia 

Research Products, Sigma-Aldrich, and Tocris Biosciences.   

 DSRT 
  Ex vivo  DSRT was  performed on freshly isolated primary AML cells 

derived from patient samples as well as mononuclear cells derived 

from healthy donors. The  compounds were dissolved in 100% dimethyl 

sulfoxide (DMSO) and dispensed on tissue culture–treated 384-well 

plates (Corning) using an acoustic liquid handling device, Echo 550 

(Labcyte Inc.). The compounds were plated in fi ve different concentra-

tions in 10-fold dilutions covering a 10,000-fold concentration range 

(e.g., 1–10,000 nmol/L). The  predrugged plates were kept in pressu-

rized StoragePods (Roylan Developments Ltd.) under inert nitrogen 

gas until needed. The compounds were dissolved with 5 μL of  MCM 

while shaking for 30 minutes. Twenty microliters of single-cell sus-

pension (10,000 cells) was transferred to each well using a Multi Drop 

Combi (Thermo Scientifi c) peristaltic dispenser. The plates were incu-

bated in a humidifi ed environment at 37°C and 5% CO 2 , and after 

72 hours cell viability was measured using CellTiter-Glo luminescent 

assay (Promega) according to the manufacturer’s instructions with a 
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Molecular Devices Paradigm plate reader. The data were normalized to 

negative control (DMSO only) and positive control wells (containing 

100 μmol/L benzethonium chloride, effectively killing all cells).   

 Generation of Dose–Response Curves and Analysis of Data 
 The plate reader data were uploaded to Dotmatics Browser/Studies 

software (Dotmatics Ltd.) for a normalized calculation of percentage 

survival for each data point and generation of dose–response curves 

for each of the drugs tested. The dose–response curves were fi tted on 

the basis of a four-parameter logistic fi t function defi ned by the top 

and bottom asymptote, the slope, and the infl ection point (EC 50 ). 

 In the curve fi tting, the top asymptote of the curve was fi xed to 100% 

viability, whereas the bottom asymptote was allowed to fl oat between 0% 

and 75% (i.e., drugs causing < 25% inhibition were considered inactive).   

 Scoring and Clustering of DSRT Data 
 To  quantitatively profi le individual patient samples in terms 

of their DSRT-wide drug responses, as well as to compare drug 

responses across various AML patient samples, a single measure was 

developed: DSS. The curve fi tting parameters were used to calculate 

the area under the dose–response curve (AUC) relative to the total 

area (TA) between 10% threshold and 100% inhibition . Furthermore, 

the integrated response was divided by a logarithm of the top asymp-

tote ( a ). Formally, the DSS was calculated by:

   

DSS
AUC

TA log
=

×
×

100

a
  

 We scored for differential activity of the drugs in AML blast cells 

in comparison with control cells, sDSS. Clustering of the drug sen-

sitivity profi les across the AML patient and control samples was per-

formed using unsupervised hierarchical complete-linkage clustering 

using Spearman and Euclidean distance measures of the drug and 

sample profi les, respectively. Reproducibility of the clustering and 

the resulting drug-response subtypes detected was evaluated using 

the bootstrap resampling method with the Pvclust R-package ( 40 ).   

 Prediction of Kinase Addictions 
 sDSSs of kinase inhibitors were further used to predict sample-

specifi c kinase addictions. Sample-specifi c sDSS responses were 

compared with target profi les for 35 kinase inhibitors overlapping 

between our compound panel and the panel profi led by Davies 

and colleagues ( 16 ). More specifi cally, for each kinase target, we 

calculated a Kinase Inhibition Sensitivity Score (KISS) by averaging 

the sDSS values among those compounds that selectively target 

the kinase. These putative selective kinases were compared with 

gene expression to exclude nonexpressed targets, and the remaining 

kinases defi ned a putative “kinaddictome” for each patient sample. 

For displaying purposes, the resulting kinases were depicted in a tar-

get similarity network, in which edges connect kinases with similar 

inhibitor specifi city profi les (ref.  16 ; Spearman rank-based correla-

tion > 0.5; Szwajda and colleagues, unpublished data).   

 DNA Sequencing 
 Genomic DNA was isolated using the DNeasy Blood & Tissue Kit 

(Qiagen). Exome sequencing was performed on the patient samples 

highlighted in  Fig.  3 . In addition, whole-genome sequencing was 

performed using DNA from the skin and AML cells from sample 

784_2. DNA (3 μg) was fragmented and processed according to the 

NEBNext DNA Sample Prep Master Mix protocol. Exome capture 

was performed using the Nimblegen SeqCap EZ v2 capture Kit 

(Roche NimbleGen). Sequencing of exomes and genomes was done 

using HiSeq1500, 2000, or 2500 instruments (Illumina). For germ-

line control samples 4 × 10 7  and for tumor samples 10 × 10 7  2 × 100 

bp paired-end reads were sequenced per sample. The leukemia DNA 

sample from patient 1497 was sequenced using the Illumina TruSeq 

Amplicon Cancer Panel and the MiSeq sequencer (Illumina).   

 Somatic Mutation Calling and Annotation 
from Exome-Sequencing Data 

 Sequence  reads were processed and aligned to the reference genome 

as described previously ( 41, 42 ). Somatic mutation calls were made 

for exome capture target regions of the NimbleGen SeqCap EZ v2 

Capture Kit (Roche NimbleGen) and the fl anking 500 bps. High con-

fi dence somatic mutations were called for each tumor sample using 

the VarScan2 somatic algorithm ( 43 ) with the following parameters:

   –  strand-fi lter 1  

  –  min-coverage-normal 8  

  –  min-coverage-tumor 1  

  –  somatic- P   value 0.01  

  –  normal-purity 0.95  

  –  min-var-freq 0    

 Mutations were annotated with SnpEff ( 44 ) using the Ensembl v68 

annotation database. To  fi lter out false-positive calls due to genomic 

repeats, somatic mutation calls in regions defi ned as repeats in the 

RepeatMasker track obtained from the University of California, Santa 

Cruz (UCSC) Genome Browser were removed from the analysis. To fi l-

ter out misclassifi ed germline variants, population variants included 

in dbSNP (Single Nucleotide Polymorphism database) version 130 

were removed. Remaining mutations were visually validated using the 

Integrated Genomics Viewer (Broad Institute).   

 Analysis of Mutation Frequencies in Serial Samples 
 To examine frequencies of the identifi ed mutations in samples 

where the mutations did not pass the criteria for high confi dence 

mutations, variant frequencies and read counts for each mutation 

were retrieved from a set of unfi ltered variant calls generated by 

VarScan2 with the following parameters:

   –  strand-fi lter 0  

  –  min-coverage-normal 8  

  –  min-coverage-tumor 1  

  –  somatic- P  value 1  

  –  normal-purity 1  

  –  min-var-freq 0    

 In addition, we used variant allele frequencies from control–leuke-

mia pairs to identify regions of LOH.   

 FLT3-ITD Detection by Capillary Sequencing and qPCR 
 For determination of patients’  FLT3 -ITD status, genomic DNA was 

extracted from the bone marrow mononuclear cell fraction. Qualita-

tive PCR was performed as described by Kottaridis and colleagues ( 45 ) 

by using a  6-carboxyfl uorescein (FAM)-labeled forward primer. The 

PCR products were separated on an agarose gel and in capillary elec-

trophoresis with an ABI3500D× Genetic Analyzer and sequenced using 

M13-tailed direct sequencing. Assessment of minimal residual disease 

(MRD) level was performed with real-time quantitative PCR (qPCR). A 

patient ITD-specifi c ASO (allele-specifi c oligonucleotide) primer was 

designed at the ITD junction region and used together with a down-

stream TaqMan probe and reverse primer (primer sequences available 

upon request). Albumin gene qPCR was additionally performed to 

normalize the variability in DNA quality in the follow-up samples.   

 Amplicon Sequencing 
 Amplicons were amplifi ed using locus-specifi c PCR primers carrying 

Illumina compatible adapter sequences, grafting sequences (P5 and 

P7), and an amplicon-specifi c 6-bp index sequence (Supplementary 

Table S7). The PCR reaction contained 10 ng of sample DNA, 10 μL 

of 2× Phusion High-Fidelity PCR Master Mix (Thermo Scientifi c), 
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and 0.5 μmol/L of each primer. Following PCR amplifi cation, samples 

were purifi ed using Performa V3 96-Well Short Plate and QuickStep2 

SOPE Resin (EdgeBio). Sequencing of PCR amplicons was performed 

using the Illumina HiSeq2000 instrument (Illumina). Samples were 

sequenced as 101-bp paired-end reads and one 7-bp index read.   

 Library Preparation, Sequencing, and Data Analysis 
of Transcriptomes 

 Total RNA (2.5 to 5 μg) was used for depletion of rRNA (Ribo-Zero 

rRNA Removal Kit; Epicentre), purifi ed (RNeasy clean-up-kit; Qia-

gen), and reverse transcribed to double-stranded cDNA (SuperScript 

Double-Stranded cDNA Synthesis Kit; Life Technologies). Random 

hexamers (New England BioLabs) were used for priming the fi rst-

strand synthesis reaction. 

 Illumina-compatible Nextera Technology (Epicentre) was used for 

preparation of RNAseq Libraries.  High Molecular Weight (HMW) 

buffer and 50 ng of cDNA were used for tagmentation as recommended 

by the manufacturer. After the tagmentation reaction, the fragmented 

cDNA was purifi ed with SPRI beads (Agencourt AMPure XP, Beckman 

Coulter). The RNAseq libraries were size selected (350–700 bp frag-

ments) in 2% agarose gel followed by purifi cation with QIAquick gel 

extraction kit (Qiagen). 

 Each transcriptome was loaded to occupy one third of the lane 

capacity in the fl ow cell. C-Bot (TruSeq PE Cluster Kit v3, Illumina) 

was used for cluster generation, and an Illumina HiSeq2000 platform 

(TruSeq SBS Kit v3-HS reagent kit) was used for paired-end sequenc-

ing with 100-bp read length. Nextera Read Primers 1 and 2 as well 

as Nextera Index Read Primer were used for paired-end sequencing 

and index read sequencing, respectively. RNA-seq data analysis, such 

as fusion gene identifi cation, mutation calling, and gene expression 

quantitation (Tophat and Cuffl inks), was done as described previ-

ously ( 46 ). Primers used to validate as well as quantify the fusion 

genes detected are listed in Supplementary Tables S8 and S9.   

 Proteomic Analysis 
 Phosphoproteomic analysis of the AML patient samples was per-

formed using Proteome Profi ler antibody arrays (R&D Systems) 

according to the manufacturer’s instructions. Lysates containing 300 

μg of protein were applied to the arrays, and fl uorescently labeled 

streptavidin (IRDye 800 CW streptavidin; LI-COR) and an Odyssey 

imaging system (LI-COR) were used for detection.   

 Other Statistical Analyses 
 Statistical analysis was performed using GraphPad Prism 5. A 

 Pearson correlation test was used to determine the correlations between 

drug sensitivity profi les of healthy donor samples. A two-tailed Student 

 t  test was used to assess the correlation between  RAS  or  FLT3  mutations 

and MEK inhibitor or dasatinib sensitivity, respectively. A correlation 

in sensitivity was considered statistically signifi cant when  P  < 0.05.    
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