IN THIS ISSUE
Highlighted research articles 705

NEWS IN BRIEF
Important news stories affecting the community 709

NEWS IN DEPTH
Q&A: Suzanne Topalian on Immune Therapies 712
A Look at the Origins of Cancer Epigenetics 713

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 714

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

IN THIS ISSUE

IN THIS ISSUE

NEWS IN BRIEF

In The Spotlight
ERK Pathway Inhibitors: How Low Should We Go? 719
M.H. Nissan, N. Rosen, and D.B. Solit
See article, p. 742

Exploiting the Head and Neck Cancer Oncogenome: Widespread PI3K-mTOR Pathway Alterations and Novel Molecular Targets 722
R. Iglesias-Bartolome, D. Martin, and J.S. Gutkind
See article, p. 761
See article, p. 770

Not Expecting the Unexpected: Diacylglycerol Kinase Alpha as a Cancer Target 726
K.P.L. Bhat and K. Aldape
See article, p. 782

Scanning for Clues to Better Use Selective Estrogen Receptor Modulators 728
M.J. Machiela and S.J. Chanock
See article, p. 812

REVIEW
Oncogenic Isocitrate Dehydrogenase Mutations: Mechanisms, Models, and Clinical Opportunities 730
R.A. Cairns and T.W. Mak

RESEARCH BRIEFS
Discovery of a Novel ERK Inhibitor with Activity in Models of Acquired Resistance to BRAF and MEK Inhibitors 742
Précis: An ERK1/2 inhibitor with properties of both type I and type II kinase inhibitors suppresses MAPK signaling and proliferation in BRAF and MEK inhibitor-resistant cancer cells. See commentary, p. 719

Inhibition of Ron Kinase Blocks Conversion of Micrometastases to Overt Metastases by Boosting Antitumor Immunity 751
H. Eyob, H.A. Ekiz, Y.S. DeRose, S.E. Waltz, M.A. Williams, and A.L. Welm
Précis: The receptor tyrosine kinase RON suppresses antitumor immune responses to promote metastatic outgrowth and is a potential therapeutic target to inhibit metastasis.

Frequent Mutation of the PI3K Pathway in Head and Neck Cancer Defines Predictive Biomarkers ... 761
Précis: PI3K pathway mutations are found in 30.5% of head and neck squamous cell carcinomas and may indicate sensitivity to PI3K inhibitors. See commentary, p. 722

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.
Integrative Genomic Characterization of Oral Squamous Cell Carcinoma Identifies Frequent Somatic Drivers 770
Précis: Gene expression, copy number, methylation, and mutation analyses implicate Notch deregulation in oral squamous cell carcinoma and identify potentially actionable events.
See commentary, p. 722

Diacylglycerol Kinase α Is a Critical Signaling Node and Novel Therapeutic Target in Glioblastoma and Other Cancers 782
Précis: Inhibition of diacylglycerol kinase α downregulates oncogenic pathways including HIF-1α and mTOR and is selectively toxic to glioblastoma and other cancer cells.
See commentary, p. 726

For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. Online-only News stories include the following:
• PI3K-δ Inhibitor Produces Long-Lasting Responses
• Price Breaks for HPV Vaccines May Aid Prevention
• Olaparib Shows Promise in Multiple Tumor Types
• New Risk Factors for Testicular Cancer
• Benchtop Sequencers Find a New Home
• Ganetespib Aids Lung Cancer Survival

ON THE COVER
Head and neck squamous cell carcinomas (HNSCC) are a genetically heterogeneous group of cancers with a poor survival rate. Lui and colleagues evaluated the mutation frequency of mitogenic pathways in HNSCCs and found that 30.5% of tumors harbored PI3K pathway mutations. Patient-derived tumorgrafts with hotspot and noncanonical PIK3CA mutations were highly sensitive to PI3K inhibitors. Pickering and colleagues performed integrated genomic analyses of oral squamous cell carcinomas (OSCC), a particularly lethal, poorly characterized HNSCC subtype. The Notch pathway was deregulated in 66% of OSCCs, and inactivation of NOTCH1 was shown to drive OSCC growth. Common inactivating mutations of FAT1 and CASP8 were also identified. Together, these findings provide insight into the etiology of HNSCC and identify potential therapeutic targets. For details, please see the article by Lui and colleagues on page 761 and the article by Pickering and colleagues on page 770.
Updated version

Access the most recent version of this article at:
http://cancerdiscovery.aacrjournals.org/content/3/7

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerdiscovery.aacrjournals.org/content/3/7.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.