IN THIS ISSUE

- **Highlighted research articles**
 > 826

NEWS IN BRIEF

- **Important news stories affecting the community**
 > 830

NEWS IN DEPTH

- **Q&A: Eric Winer on Neoadjuvant Clinical Trials**
 > 832

RESEARCH WATCH

- **Selected highlights of recent articles of exceptional significance from the cancer literature**
 > 835

ONLINE

- **For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.**

VIEWS

In The Spotlight

- **Targeting BRAF in Multiple Myeloma**
 > 840

 E. O'Donnell and N.S. Raje

 See article, p. 862

- **Energizing the Search to Target LKB1-Mutant Tumors**
 > 843

 A.I. Marcus and F.R. Khuri

 See article, p. 870

- **Myeloid TGF-β Responsiveness Promotes Metastases**
 > 846

 F. Souza-Fonseca-Guimaraes and M.J. Smyth

 See article, p. 936

REVIEW

- **Molecular Classification of Prostate Cancer Progression: Foundation for Marker-Driven Treatment of Prostate Cancer**
 > 849

 C.J. Logothetis, G.E. Gallick, S.N. Maity, J. Kim, A. Aparicio, E. Efstathiou, and S.-H. Lin

RESEARCH BRIEFS

- **Targeting the BRAF V600E Mutation in Multiple Myeloma**
 > 862

 Précis: A patient with BRAFV600E-mutant multiple myeloma experienced a rapid, stable response to the BRAF inhibitor vemurafenib.

 See commentary, p. 840

- **Metabolic and Functional Genomic Studies Identify Deoxynucleotidyldylate Kinase as a Target in LKB1-Mutant Lung Cancer**
 > 870

 Précis: Inhibition of DTYMK, a critical enzyme for nucleotide metabolism, is synthetically lethal with LKB1 deficiency in KRAS-driven lung cancer.

 See commentary, p. 843

- **Identifying the Ubiquitin Ligase Complex that Regulates the NF1 Tumor Suppressor and Ras**
 > 880

 P.E. Hollstein and K. Cichowski

 Précis: CUL3 and the adaptor protein KBTBD7 enhance RAS activation by promoting both the regulated ubiquitin-mediated degradation of neurofibromin and its pathogenic destruction in glioblastoma.
Autophagy Opposes p53-Mediated Tumor Barrier to Facilitate Tumorigenesis in a Model of PALB2-Associated Hereditary Breast Cancer

Précis: Autophagy promotes cell survival and tumorigenesis in a model of hereditary breast cancer driven by conditional knockout of Poib2 in the mammary gland.

Stromal EGF and IGF-I Together Modulate Plasticity of Disseminated Triple-Negative Breast Tumors

Précis: Expression of EGF and IGF-I in the tumor microenvironment is required for malignant conversion of certain indolent cancer cells and accelerates recurrence of triple-negative breast cancer.

Pten-Null Tumors Cohabitating the Same Lung Display Differential AKT Activation and Sensitivity to Dietary Restriction

Précis: Heterogeneous AKT activation in Pten-null murine lung tumors and PTEN-deficient human NSCLCs suggests that PTEN loss does not always correlate with AKT activity.

TGF-β Signaling in Myeloid Cells Is Required for Tumor Metastasis

Précis: Disruption of TGFβ signaling in myeloid cells enhances IFNγ production and CD8+ T-cell–mediated antitumor immunity and inhibits metastasis.

See commentary, p. 846

Correction

Telomeric Allelic Imbalance Indicates Defective DNA Repair and Sensitivity to DNA-Damaging Agents

Curry and colleagues made the surprising observation that two adjacent tumor types with either low or high AKT activity can develop in Pten-null lungs. Heterogeneous AKT activation was cell autonomous and associated with differential expression of ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5), a UDPase that promotes receptor tyrosine kinase folding in the endoplasmic reticulum. Knockdown of ENTPD5 led to a reduction in levels of insulin growth factor receptor β (IGFIRβ), an upstream activator of AKT. In human non–small cell lung cancers (NSCLC), AKT phosphorylation was directly correlated with ENTPD5 expression, but not always with loss of PTEN expression. Together, these findings suggest that PTEN loss may not be sufficient to activate AKT and may not be an appropriate biomarker of PI3K/AKT activation or response to PI3K/AKT-targeted therapies. For details, please see the article by Curry and colleagues on page 908.
CANCER DISCOVERY

3 (8)

Updated version
Access the most recent version of this article at:
http://cancerdiscovery.aacrjournals.org/content/3/8

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerdiscovery.aacrjournals.org/content/3/8.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.